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Abstrakt

ROŠŤÁKOVÁ, Zuzana: Pravdepodobnostné modelovanie a funkcionálna dátová analýza
štruktúry spánku. [Dizertačná práca] – Slovenská technická univerzita v Bratislave. Fakulta
elektrotechniky a informatiky.
Školiteľ: Ing. Mgr. Roman Rosipal, Ph.D.
Bratislava 2018, 128 strán.

Spánok je spojitý heterogénny proces, ktorý počas noci prechádza konečným počtom spánkových

stavov. Jeho kvalita a štruktúra vo výraznej miere ovplyvňujú naše každodenné správanie.

Spánkový elektroencefalogram (EEG) zachytávajúci aktivitu mozgu počas spánku tvorí základný

kameň tejto práce. Nameraný EEG signál je následne spracovaný pomocou pravdepodobnost-

ného spánkového modelu a reprezentovaný konečnou množinou spánkových pravdepodobnostných

kriviek. Prvá časť práce je zameraná na detekciu spánkových profilov, ktoré významne súvisia

s dennými mierami (subjektívne hodnotenie kvality spánku, fyziologický stav organizmu, kog-

nitívne testovanie) pomocou metód funkcionálnej dátovej analýzy, konkrétne zhlukovej analýzy

spánkových kriviek. Ak spánkové krivky nie sú synchronizované v čase, zhluková analýza môže

viesť k zaradeniu kriviek s podobným profilom do rôznych zhlukov. Existujúce metódy simultánne

kombinujúce zhlukovanie a synchronizáciu kriviek pri aplikácii na spánkové dáta nevedú k us-

pokojivým výsledkom. Z tohto dôvodu sme navrhli vlastnú metódu, ktorá iteračne kombinuje

zhlukovú analýzu kriviek a časovú synchronizáciu. Jej benefity oproti existujúcim prístupom

sú demonštrované na dvoch množinách spánkových dát. Vzniknuté zhluky obsahujú dva typy

variability – medzi zhlukmi a v rámci zhlukov. Na detekciu a analýzu oboch druhov variability

sme si zvolili viacstupňovú funkcionálnu verziu metódy hlavných komponentov. Táto metóda

bola pôvodne určená len pre dáta s rovnakým počtom pozorovaní v rámci zhlukov. V tejto práci

uvádzame aj jej verziu rozšírenú na prípad, keď sa počet pozorovaní medzi zhlukmi líši.

Kľúčové slová: spánkový elektroencefalogram, funkcionálna dátová analýza, pravdepodob-

nostný spánkový model, synchronizácia kriviek, zhluková analýza kriviek, viacstupňová funkcionál-

na verzia metódy hlavných komponentov.
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Abstract

ROŠŤÁKOVÁ, Zuzana: Probabilistic modelling and functional data analysis of sleep
structure. [Dissertation thesis] – Slovak University of Technology in Bratislava. Facul-
ty of Electrical Engineering and Information Technology.
Supervisor: Ing. Mgr. Roman Rosipal, Ph.D.
Bratislava 2018, 128 pages.

Sleep is a continuous heterogeneous process consisting of a finite number of sleep stages during a

night. Its quality and structure influences our daily behaviour. The sleep electroencephalogram

(EEG) representing electrical activity of a brain during sleep is a cornerstone of the thesis. The

EEG signal is processed by the probabilistic sleep model and represented by a finite set of sleep

probabilistic curves. In the first part of the thesis we aim to detect specific sleep profiles – sleep

biomarkers – which significantly correlate with measures representing daily behaviour (subjec-

tively scored sleep quality, physiological factors, cognitive tests). For this purpose functional

data analysis – namely the curve cluster analysis – is used. However, when the sleep curves

are misaligned in time, cluster analysis may assign curves with a similar profile into different

clusters. Existing methods which simultaneously combine cluster analysis and curves alignment

are not appropriate for our sleep data. Therefore we propose a novel method based on iterative

combination of curves alignment and clustering. Benefits of our method over existing approaches

are demonstrated on two datasets of sleep curves. Formed clusters show two types of variability –

between and within clusters. To detect and analyse these types of variability the multilevel func-

tional principal component analysis is used. This method was originally developed only for data

with the same number of observations within clusters. In this thesis we propose its modification

for data with varying number of observations per cluster.

Key words: sleep electroencephalogram, functional data analysis, probabilistic sleep model,

curve registration, curve clustering, multilevel functional principal component analysis.
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Introduction

Sleep is a dynamical process which plays important role in our lives. Its structure, quality
and length influences humans daily behaviour, affectivity, mood and also health. The
main goal of our long term research is to detect specific sleep profiles – sleep biomarkes –
reflecting the sleep quality and significantly correlating with daily life performance.

In order to analyse the sleep process we need an appropriate sleep model. Nowadays,
the Rechtschaffen and Kales sleep model [Rechtschaffen and Kales, 1968] or its novel
version produced by the American Academy of Sleep Medicine (AASM) [Iber et al., 2007]
are widely used in clinical practice. Both models are based on assignment of 30–second long
time intervals of sleep into sleep stages according to changes in structure and depth of sleep.
However, this discrete representation of sleep shows several disadvantages [Himanen and
Hasan, 2000]. Small set of sleep stages, non–smooth changes between sleep stages or too
long time segments considered by both models represent only a few of such disadvantages.

Therefore in this thesis we prefer to use the Probabilistic sleep model (PSM) [Lewandowski
et al., 2012] which provides a continuous description of the sleep process. The PSM over-
comes all above mentioned disadvantages of the standard sleep models because it operates
only on three–second long time segments for each of which probability values of their re-
lationship to one of a higher number of sleep states – called microstates – is computed.
Considering the probability values of a sleep microstate as a function of time we obtain a
sleep probabilistic curve.

Current studies dealing with relationship between sleep structure and humans’ physio-
logical state or well-being measures are based on the extraction of one–dimensional sleep
characteristics (for example the total sleep time, time spent in each sleep stage separately
or sleep efficiency) from the standard sleep models and their correlation with variables
representing daily life behaviour. The same procedure is possible also in the case of
the PSM – the sleep probabilistic curves can be represented by a set of one–dimensional
measures, but this may result into the partial loss of important information about the sleep
dynamics. Fortunately, character of sleep probabilistic curves offers a way for inspection
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of the sleep structure through functional data analysis.
We divide our thesis into two main parts.
In the first part we aim to detect relationship between sleep structure and daily mea-

sures representing subjective feelings in the morning, physiological state of an organism
and performance of subjects in neuropsychological tests. Out of many techniques availa-
ble for functional data and their relation to one–dimensional variables or vectors in this
thesis we focus on functional cluster analysis. The main idea is to divide a given dataset
of subjects into subgroups according to similarity of their sleep probabilistic curves and
then to test whether the clusters significantly differ in a given daily measure. Due to
a nontrivial character of our sleep data another approaches, for example the functional
regression model [Ramsay and Silverman, 2005], don’t lead to easily interpretable results.

Many clustering techniques well–known in the multidimensional data analysis can be
after small modifications adapted for functional data clustering, for example k–means or
k–medoids. Unfortunately, in practice observed curves showing similar profile are often
misaligned time. We say, that two curves are misaligned if they have similar shape but
their important characteristics like local optima or zero–crossings occur at different time.
Therefore clustering methods may consider these curves as dissimilar and assign them into
different clusters.

To avoid misinterpretation of results caused by curve misalignment, Ramsay and Sil-
verman [2005] recommend to align or in other words to register or to synchronise data in
time immediately before analysis. Because of nontrivial character of the problem, usually
depending on a given data type, there are many methods developed for the curve align-
ment problem. They differ in the definition of a curve similarity and an algorithm for the
curve alignment. In this thesis we describe several chosen registration methods for which
we observed a good performance on our sleep data.

However, when the dataset consists of curves with many different profiles, registration
methods usually lead to two opposite extrema – either they are not able to align the
curves properly or the alignment is visually ideal, but at the cost of rapid distortions of
the curves profiles. Therefore it would be appropriate to align only curves with a similar
shape. However, this in turn leads us back to the cluster analysis of misaligned curves.

Several methods can be found in literature which produce simultaneous alignment and
clustering of curves. Unfortunately, we observed that they are not appropriate for our
sleep data due to a high complexity of their algorithms or character of the alignment.
Therefore we propose a novel algorithm which iteratively combines cluster analysis with
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curves alignment. Its superior performance over existing methods is demonstrated on two
sleep datasets.

In the second part of the thesis we deal with the Multilevel functional principal compo-
nent analysis [Di et al., 2009] as a dimensionality reduction technique for functional data
with repeated measurements – hierarchical functional data. The original method was pro-
posed only for balanced data when for each object the same number of measurements is
available. We adapt the methodology for the case when the number of observations differs
among objects (unbalanced data). This adaptation is one of the main contributions of the
thesis. Finally, the both versions of the algorithm are applied to a sleep dataset.

To sum up the focus of the dissertation thesis, our main objectives are as follows:

• Analysis of sleep structure provided by the Probabilistic sleep model and methods of
functional data analysis in i) dataset of healthy subjects without serious sleep prob-
lems and ii) patients following an ischemic stroke with the aim to detect relationships
between sleep structure and daily measures (questionnaires about sleep and awak-
ening quality, mood or drowsiness; neurocognitive tests for short–term memory, fine
motor activity; pulse rate, blood pressure).

• Adaptation of existing methods or proposition of a new method for simultaneous
alignment and cluster analysis of sleep probabilistic curves. Analysis of advantages
and disadvantages of the curves alignment for each sleep stage and each sleep mi-
crostate separately.

• Analysis of relationships between differences in sleep structure of two nights of sub-
jects and corresponding difference in daily measures by the Multilevel functional
principal component analysis (MFPCA).

• Adaptation of the MFPCA method to functional datasets with repeated observa-
tions, where i) the order of observations within subjects is exchangeable, and ii)
number of observations varies with subjects.

Our thesis is organised as follows: In the first chapter the brief description of polysomnog-
raphy as a standard tool for sleep monitoring is given. Then, in this thesis used datasets
of healthy subjects without serious sleep problems as well as patients following an is-
chemic stroke are described. Chapter 2 deals with the standard Rechtschaffen and Kales
[Rechtschaffen and Kales, 1968] sleep model and the Probabilistic sleep model [Lewandowski
et al., 2012] as well as their application to the studied sleep datasets.

3



Short introduction to functional cluster analysis and several examples of distance mea-
sures between curves is given in Chapter 3. Chapters 4 and 5 deal with the curves misalign-
ment problem and existing methods for solving it. The both chapters form the important
theoretical part of the thesis. Moreover, Chapter 5 provides detailed description of our
novel methodology for iterative combination of curve clustering and alignment. The pro-
posed method is validated and compared with existing approaches in Chapter 6. We also
aim to find the answer to the question for which sleep states the curves alignment shows
benefits when detecting a relationship with daily measures and for which it is counter–
productive.

Next, Chapter 7 is focused on the Multilevel functional principal component analysis
[Di et al., 2009] and its adaptation to the both balanced and unbalanced data. Main
results and contributions of the thesis are summarised in Conclusion.

4



Chapter 1

Sleep monitoring

Sleep is a dynamic process which can be described by a finite set of sleep states. In this
chapter the polysomnography (PSG) is described as a standard diagnostic tool for the
sleep monitoring. In the centre of our interest is a set of electrical biosignals representing
the activity of an human organism during sleep, especially the electroencephalogram and
the electromyogram. We focus on their basic properties, measurement and their relevance
for the analysis of the sleep process.

In the second part of the chapter two sleep datasets, which are used in this thesis, are
described in details – dataset of patients following an ischemic stroke and a control group
of healthy sleepers.

1.1 Polysomnography

Polysomnography is a standard diagnostic tool for the sleep study. It includes a set of
recordings of the biophysiological changes in the human body occurring during the sleep
process. The information about the electrical potentials produced by brain – electroen-
cephalogram (EEG) – and the muscle activity – electromyogram (EMG) – are the most
important parts of the PSG recordings for our thesis. Moreover, PSG includes also the
measurement of the eye movements (electrooculogram, EOG); the heart rhythm (electro-
cardiogram, ECG) and breathing (Snore, Flow) are also monitored.

Recording of the EEG signal is based on the changes of electrical potentials over time
between a pair of electrodes located on the scalp – a single electrode and a reference
electrode [Bronzino, 2000]. Electrodes usually consist of Ag–AgCl discs with 1–3 mm in
diameter. Stability and low impedance in the electrode–skin interface are achieved by

5



fixing the electrodes with a special contact gel. For a long–term measurement spindle
electrodes located between the skin and the skull of a subject are preferred [Bronzino,
2000].

Figure 1.1 represents an example of one minute long EEG signal recording of a healthy
subject without serious sleep problems. Information incorporated in the EEG signal may
reveal many pathologies in the brain activity, epilepsy or other diseases. Moreover, the
EEG signal is useful in the process of the sleep modelling and assignment of short time
intervals into sleep stages. For more information see Section 2.1.

Fp1-M2

Fp2-M1

C3-M2

C4-M1

O1-M2

O2-M1

EMGmental

Figure 1.1: One minute long recording of the EEG and EMG signals of a healthy subject
without serious sleep problems. In the case of the EEG signal three pairs of electrodes were
used – frontal Fp1–M2, Fp2–M1, central C3–M2, C4–M1 and occipital O1–M2, O2–M1.
The EMG signal was recorded by two electrodes located above and one located below the
subject’s chin.

The EMG represents electrical signals travelling between muscles and the nervous
system. It is useful for diagnosis of the neuromuscular diseases. In the sleep study it
forms a useful tool for identification of the sleep stages which are connected with increased
movements. Recording of the EMG signal is obtained by the intramuscular or surface
electrodes. The first type of electrodes consists of a thin needle applied to the belly of the
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muscle. For the sleep PSG measurement the surface electrodes are preferred. In our thesis
the EMG signal was measured by a pair of electrodes located above and one electrode
located below the subjects’ chin.

1.2 Sleep data

In this section two sleep datasets used in the thesis are described in details – the database
of subjects without serious sleep problems and the database of patients after ischemic
stroke.

1.2.1 SIESTA database

The European sleep database SIESTA [Klösch et al., 2001] is a systematic PSG database
with sleep recordings of 200 healthy subjects and of 100 subjects with selected sleep
disorders of high prevalence. In this thesis we used a subset of the SIESTA database
including PSG recordings of 146 subjects without serious sleep problems spending two
consecutive nights in the sleep lab. The database consists of 85 men and 61 women with
the average age of 53 years.

The PSG measurement started right after going to bed and switching the lights off,
the recording stopped after a subject awoke spontaneously. The EEG signal was measured
by three pairs of electrodes – frontal (Fp1–M2, Fp2–M1), central (C3–M2, C4–M1) and
occipital (O1–M2, O2–M1). The location of the electrodes on the scalp is depicted in Fig-
ure 1.2. The reference electrodes M1 and M2 were placed on the mastoid. Two electrodes
for monitoring the muscle activity were placed above the chin of a subject, the reference
electrode was applied below the chin. Linked electrodes applied to the musculus anterior
tibialis on both legs were helpful for another EMG recording.

After awakening subjects filled out several questionnaires scoring their sleep and awa-
kening quality. Subjective sleep and awakening quality was assessed in the morning utilis-
ing a standardised Self–rating questionnaire (SRQ) [Saletu et al., 1987]. The SRQ consists
of 20 items yielding in three sub–scores (sleep quality, awakening quality and somatic com-
plaints). Four 100 mm visual analogue scales [Aitken, 1969] for drive, mood, affectivity
and drowsiness were also used. The self–assessment questionnaire of well–being consisting
of 28 items [von Zerssen et al., 1970] was filled by subjects in the evening and morning
sessions.
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Moreover, the subjects performed several neuropsychologic tests for assessment of at-
tention, attention variability, concentration, short–term memory and fine motor activity
[Grünberger, 1977]. Tests were carried out after washing, getting dressed and breakfast
and in general between one and two hours after getting up. For more details see [Klösch
et al., 2001; Rosipal et al., 2013]. Finally, the evening blood pressure and pulse values
were recorded in less than two hours before bedtime and in the morning after sleep. The
list of all daily measures and their abbreviations can be found in Table 1.1.

In contrast to [Rosipal et al., 2013] the daily measures listed in Table 1.1 were rescaled
in a way that low values indicate good sleep. Several neuropsychological tests and physio-
logical measures showed high correlation with age. Therefore the age effect was adjusted
by subtracting an nth order polynomial (n = 1, 2, 3) fitted to the data in the least squares
sense.

Moreover, following the research lines presented in [Rosipal et al., 2013], we considered
three factor scores – factor of subjectively scored sleep and awakening quality (FA1),
physiological factor (FA2) and neuropsychological factor (FA3) obtained as the dominant
factors after applying factor analysis to the set of daily measures listed in Table 1.1.

1.2.2 Patients following ischemic stroke

In our thesis the database of PSG recordings of patients after ischemic stroke hospitalised
at the 1st Department of the Neurology, Comenius University in Bratislava was used. The
standard overnight PSG recording took place one to 10 days after a stroke occurred. The
recording itself was carried out by the Alice R© 5 or Alice R© 6 device [Philips Respironics,
2010].

The EEG signal of patients after stroke was measured only by two pairs of electrodes
– central (C3–A2, C4–A1) and occipital (O1–A2, O2–A1). The reference electrodes A1
and A2 were placed on the ear lobes (Figure 1.2). The EMG signal was measured in the
same way as in the case of the SIESTA database.

The first part of the database of patients after stroke consists of PSG recordings of 60
men (average age 65 years) and 35 women (average age 68 years) measured between years
2013 and 2017. This dataset or its subsets served for the detection of changes in sleep
patterns between patients after stroke and healthy sleepers of the same age and gender
[Rohleder, 2016; Rošťáková, 2015; Bui, 2014; Bui and Rosipal, 2014; Škoviera et al., 2014]
and between patients with different type, location or severity of the stroke [Rohleder,
2016], but it is not considered in this thesis.
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Daily measure Abbreviation

Self–rating questionnaire for sleep quality SRQ_sq

Self–rating questionnaire for awakening quality SRQ_aq

Self–rating questionnaire for somatic complaints SRQ_scom

Visual analogue scale test for drive VAS_drive

Visual analogue scale test for mood VAS_mood

Visual analogue scale test for affectivity VAS_aff

Visual analogue scale test for drowsiness VAS_drows

Well–being self assessment scale (morning/evening) WB_m, WB_e

pulse rate (morning/evening) pul_m, pul_e

systolic blood pressure (morning/evening) sys_m, sys_e

diastolic blood pressure (morning/evening) dia_m, dia_e

Numerical memory test NMT

Alphabetical cross–out test (total score) ACT_ts

Alphabetical cross–out test (variability) ACT_sv

Alphabetical cross–out test (% of errors) ACT_errp

Fine motor activity test (right/left hand) FMAT_r, FMAT_l

Table 1.1: The list of daily measures of the healthy sleepers from the SIESTA database
and their abbreviations.

The second part of the dataset of patients after stroke includes PSG recordings of 24
patients. These patients also took part in a battery of cognitive tests and one questionnaire
performed in the morning after the PSG recording. These were

• the Fine motor activity test (FMAT2) where the subjects were asked to redraw the
template patterns of simple geometric shapes (Figure 1.3). Then the percentage of
correctly retraced pixels was computed. Here we use the abbreviation FMAT2 in
order to distinguish between this test and the Fine motor activity test for healthy
subjects (FMAT).

• the Lateralised attention network test (LANT) [Greene et al., 2008] measures three
independent behavioural components of attention (Table 1.2)

– spatial Orienting - consists of two parts i) the benefit or facilitatory component
of a valid spatial cue (Orienting facilitatory, LANT_OF ) and ii) the cost or in-
hibitory component of an invalid spatial cue (Orienting inhibitory, LANT_OI),
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Figure 1.2: The scalp placement of three pairs of electrodes used for the EEG signal
recording. Original image can be found in [Malmivuo and Plonsey, 1995].

– Alerting - the benefit of temporal pre–cues (LANT_A),

– Conflict resolution - ability to overcome distracting stimuli (LANT_C).

The test consists of five arrows briefly flashed in the left/right visual field. The middle
arrow is a target and the four surrounding arrows form a distractor (congruently or
incongruently orienting to the target), the presentation side (right/left) is indicated
with a pre-cue ? (valid, invalid, no cue, double cue). The goal of the test is to
determine the orientation of the target arrow. Score of each independent component
of the test is computed in the following way

– spatial Orienting - difference in reaction times to valid cue (LANT_OF) or
invalid cue (LANT_OI) and double cue,

– Alerting - difference in reaction times to double cue and no cue,

– Conflict resolution - difference in reaction times to congruent stimuli and in-
congruent stimuli.

For more details see [Greene et al., 2008] or [Rybár et al., 2016].

• the Reaction time test (RTT) formed a training exercise before the LANT. A subject
was asked to click with a computer mouse once a target (circle) occurred on a
computer screen as quickly as possible. According to the subject’s use of index
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finger or middle finger on the dominant and non–dominant hand we distinguished
four trials. The outcome of the test consists of the average reaction time for each
trial, mean and minimal reaction time across trials.

• the T–MENSTAT questionnaire [Pacific Development and Technology, LCC, 2012]
was filled by subjects immediately before (T–MENSTAT_A) and after performing
the neurocognitive tests (T–MENSTAT_B). It consists of four parts describing sub-
jective level of energy and motivation (T–MENSTAT_A/B_1), fatigue
(T–MENSTAT_A/B_2), frustration (T–MENSTAT_A/B_3) and drowsiness (T–
MENSTAT_A/B_4).

• the Working memory test (WMT) which represents a standard test for assessing the
capacity of short–time and working memory [Kaufman and Lichtenberger, 2005].
The subject is asked to repeat a sequence of presented digits in the same or reverse
order. Once the correct answer is obtained, the length of a sequence increases. The
total score reflects the length of the longest sequence which the subject was able to
repeat correctly.

Figure 1.3: Six basic shapes used in the Fine motor activity test (black lines). The shapes
were retraced by 68–year–old right–handed man after stroke (red lines).

Severity of a stroke was ranked one, 7 and 90 days after the stroke occurrence according
to the National Institutes of Health Strokes Scale (NIHSS) [Brott et al., 1989].

The age effect in daily measures was corrected in the same way as in the database of
healthy sleepers. The list of all daily measures and their abbreviations can be found in
Table 1.2.

11



Daily measure Abbreviation

Fine motor activity test FMAT2

- number of correctly retraced pixels in a pattern n FMAT2_cpn

- number of successes in pattern n FMAT2_spn

Reaction time test RTT

- average reaction time in a trial n RTT_n

- the minimal reaction time RTT_min

- the mean reaction time across trials RTT_mean

Working memory test, forward WMT_fw

Working memory test, backward WMT_bw

Lateralised attention network test LANT

- alerting LANT_A

- conflict LANT_C

- orienting LANT_O

- orienting facilitatory LANT_OF

- orienting inhibitory LANT_OI

- right visual field + type (A, C, O, OF, OI) LANT_RVF_type

- left visual field + type (A, C, O, OF, OI) LANT_LVF_type

T–MENSTAT questionnaire, before tests T–MENSTAT_A

- level of energy and motivation T–MENSTAT_A_1

- level of fatigue and exhaustion T–MENSTAT_A_2

- level of irritation and frustration T–MENSTAT_A_3

- level of sleepiness and drowsiness T–MENSTAT_A_4

T–MENSTAT questionnaire, after tests, part n = 1, 2, 3, 4 T–MENSTAT_B_n

Table 1.2: The list of daily measures for the patients after stroke and their abbreviations.
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Chapter 2

Sleep modelling and analysis of the

sleep process

Sleep is in time continuous process which can be described by a finite set of sleep states
during the night. The character of sleep states depends on a chosen sleep model. In
this chapter an overview of two sleep models is given. The Rechtschaffen and Kales
sleep model (R&K) [Rechtschaffen and Kales, 1968] is widely used in the clinical practice
but it produces only discrete representation of the sleep process. On the other hand
the Probabilistic sleep model (PSM) [Lewandowski et al., 2012] provides a continuous
representation of the sleep and therefore is preferred in this thesis.

In the second part of the chapter the PSM is applied to the database of healthy sleepers
as well as to the dataset of patients after an ischemic stroke.

2.1 Rechtschaffen & Kales sleep model

Sleep can be described as a continuous heterogeneous process visiting a finite set of different
sleep stages during the night. The R&K sleep model distinguishes six basic sleep stages.

First, it is the Wake stage, when a subject doesn’t sleep but his or her eyes are closed.
The S1 stage can be characterised as a light sleep. It is similar to the Wake stage, but
without eye movements under closed eyelids. In the S2 stage we spend major time during
sleep. Presence of so called “spindles” is typical for this stage. Spindles are bursts of an
oscillatory brain activity which are visible in the EEG signal [Rechtschaffen and Kales,
1968]. Slow wave sleep is represented by the stages S3 and S4. In contrast to the S2 stage
higher amplitudes and slow waves present in the EEG signal are typical for both of them.
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Finally, it is the REM stage or the rapid eye movement. Muscular and EEG activity
similar to wakefulness is typical for this stage. Right before the REM occurrence muscular
tonic is followed by muscle relaxation. As for its name, quick eye movements behind closed
eyelids are typical.

Except of that, R&Kmodel distinguishes also sequences with artefacts (unscored, UNS)
and segments with movements labelled as movement time (MT).

Nowadays a novel scoring system of the American Academy of Sleep Medicine (AASM)
[Iber et al., 2007] is used in the clinical practice. In contrast to R&K the sleep stages S3
and S4 are merged into one sleep stage Slow Wave Sleep (SWS). Stages S1, S2 and SWS (in
AASM labelled as N1, N2, N3) are also known as NREM or nonREM stages. Graphical
representation of R&K or AASM sleep model is called hypnogram (Figure 2.1).

0 1 2 3 4 5 6 7 8
Wake

S1

S2

SWS

REM

MT

UNS

time (hours)

s
le

e
p

 s
ta

g
e

s

Figure 2.1: Example of a hypnogram of a 22–year–old healthy man. In addition to the
standard sleep stages Wake, S1, S2, SWS and REM also the unscored segments (UNS)
and segments with movements (MT) are depicted.

In both sleep models, the EEG, EMG and other types of biosignals are divided into
non–overlapping intervals of the length 30 seconds. Each time window is then classified
into one of the above described sleep stages. The staging is done manually by a doctor or
by an automatic scoring system, for example Somnolyzer24×7 [Anderer et al., 2005].

In spite of the extensive use of both sleep models in the clinical practice they are under
long term criticism, mainly due to the fact that both models produce the sleep process
representation with a small number of discrete sleep stages identified at the scale of 30–
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second long data segments [Himanen and Hasan, 2000]. In the area of the sleep modelling
there is a long term interest for an alternative ways of the sleep representation which
successfully overcomes the above mentioned problems. Therefore, in this thesis we focus
on the PSM as described in [Lewandowski et al., 2012].

2.2 Probabilistic sleep model

The PSM characterises sleep with probability values of a finite number of sleep states called
sleep microstates. Lewandowski et al. [2012] empirically set the number of microstates to
20.

Similarly to R&K or AASM, the PSM is also based on the EEG and EMG signal but the
time windows of the length of three seconds are considered. Second difference between the
PSM and standard sleep models is in the sleep staging. For each time window probability
values for all 20 sleep microstates are estimated in contrast to a discrete assignment into
one of the R&K or AASM sleep stages. In other words, each time segment is characterised
by a 20–dimensional vector of probability values. Considering the probability values of a
given sleep microstate as a function of time we obtain a sleep probabilistic curve.

In the case of the PSM there are no general rules or manuals which can be applied to
the PSG recording of a subject. For a given dataset, the PSM have to be trained first and
after that it may be applied to a wider set of sleep data.

Before training the model, the data are preprocessed. Lewandowski et al. [2012] con-
sidered only the EEG signal from the C3–M2 and C4–M1 electrodes as input for the PSM.
First, the EEG signal is divided into non-overlapping three–second long time segments and
for each time window, coefficients of an autoregressive model of order M are estimated
with the Burg method. Then the time windows are assigned into one of four classes of
spindles (0 = no spindle, 1 = possible spindle, 2 = probable spindle, 3 = certain spindle)
by using a linear discriminant analysis applied to the EEG spectral features, for more
details see Lewandowski et al. [2012].

Because of the subject’s movement, malfunctioning of electrodes or external factors,
the EEG signal includes artefacts. To avoid possible misinterpretation of results the time
segments with artefacts are properly detected. Primarily the EEG signal from the C3–M2
electrode is used. When an artefact occurs in a time window of the EEG signal from the
C3–M2 electrode, the window is replaced by a corresponding time segment of the EEG
signal from the C4–M1 electrode. If it is not possible because of an artefact presence in
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the EEG signal from both electrodes, the time window is omitted from further analysis.
Once the data are preprocessed, the model’s training begins. Let a denotes the vector

of autoregressive coefficients of the lengthM , z ∈ {1, . . . , 20} is one of the microstates and
p(z) is an unknown probability, that we are in a microstate z at a given time window. A
Gaussian mixture model is then estimated in the M–dimensional space of autoregressive
coefficients

p(a) =
20∑
z=1

p(z)p(a|z) =
20∑
z=1

πzN (a|µz,Σz) .

Here, N (a|µ,Σ) denotes the probability distribution function of a normal distribution
with mean µ and covariance matrix Σ evaluated at the vector a.

However, the sleep microstates are sometimes missing physiological interpretation. To
better understand their structure the PSM estimates their relationships to the standard
sleep stages. Let us denote the R&K score for a given three–second long time segment as
r ∈ {0 = Wake, 1 = S1, 2 = S2, 3 = SWS, 5 = REM} and s ∈ {0, 1, 2, 3} is a class of
spindles. Because a, r and s are independent [Lewandowski et al., 2012], we can write

p(a, r, s) =
20∑
z=1

p(z)p(a|z)p(r|z)p(s|z) =
20∑
z=1

πzN (a|µz,Σz) p(r|z)p(s|z). (2.1)

The conditional probability of a sleep stage r ∈ {0, 1, 2, 3, 5} under the assumption that we
are in a microstate z ∈ {1, . . . , 20} at a given time window is denoted by p(r|z). Similarly,
p(s|z) reflects the conditional probability for the spindle occurrence under the assumption

that we are in the microstate z. Note that
∑

r∈{0,1,2,3,5}

p(r|z) = 1 and
3∑
s=0

p(s|z) = 1 for a

given z ∈ {1, . . . , 20}.
The training of the PSM is based on the estimation of unknown probabilities and

parameters in (2.1). Because of the latent variable z, the direct use of the maximum
likelihood algorithm is not possible. A suitable tool for this case is the Expectation–
Maximisation algorithm (EM algorithm). For more details about the estimation of the
unknown quantities with the EM algorithm see Appendix A in [Lewandowski et al., 2012].

Once p(r|z), r ∈ {0, 1, 2, 3, 5}, z ∈ {1, . . . , 20} are estimated, it is possible to reconstruct
probabilistic curves for the sleep stages in the R&K sense and to compare these results
with the standard R&K scores.
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2.3 Application to the sleep data

2.3.1 The healthy sleepers from the SIESTA database

In the first step we considered the data of healthy sleepers from the SIESTA database. In
contrast to the original PSM [Lewandowski et al., 2012], we trained a new version of the
model based on the EEG signal from three pairs of electrodes (Fp1–M2, Fp2–M1, C3–M2,
C4–M1,O1–M2, O2–M1) and EMG as well. In our previous work [Rošťáková, 2015] we
demonstrated that the inclusion of the EMG signal and the EEG signal from more than
one pair of electrodes improves the detection of the REM related sleep microstates.
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Figure 2.2: An example of the sleep probabilistic curves for 20 microstates of a 42–year–old
healthy man.

For the EEG signal, the autoregressive model of order five was chosen, in case of the
EMG signal it was the autoregressive model of order two. Autoregressive coefficients of the
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EEG signal from three EEG electrodes and the EMG signal were merged into one vector
of the length 17 in the following order [Fpx, Cx, Ox, EMG], where x represents either left
or artefacts free EEG electrode at the frontal (Fp), central (C) or the occipital (O) spatial
site. Details of the choice of an appropriate order of the used autoregressive models for
the EEG and EMG signals are given in [Rošťáková, 2015]. Artefacts in the EEG signal for
healthy sleepers were detected by the automatic scoring system Somnolyzer24×7 [Anderer
et al., 2005]. The remaining part of the training process of the PSM was performed in the
same way as in [Lewandowski et al., 2012].

An example of the sleep probabilistic curves for a 42–year–old healthy man is depicted
in Figure 2.2 and the sleep probabilistic curves of the standard sleep stages and corres-
ponding R&K scores for the same subject are depicted in Figure 2.3. The similarity
weights between the sleep microstates and the standard sleep stages Wake, S1, S2, SWS
and REM are listed in Table 2.1. For example, sleep Microstates 8 and 14 are similar
to the REM stage with probabilities 74% and 72%, while Microstate 13 lies on a border
between the Wake stage and the light sleep (S1 stage).

sleep Wake S1 S2 SWS REM

micro.

1 0.00 0.02 0.85 0.02 0.11

2 0.73 0.21 0.04 0.00 0.02

3 0.00 0.00 0.30 0.70 0.00

4 0.01 0.00 0.25 0.74 0.00

5 0.00 0.00 0.35 0.65 0.00

6 0.85 0.06 0.04 0.00 0.05

7 0.00 0.00 0.64 0.36 0.00

8 0.00 0.03 0.23 0.00 0.74

9 0.03 0.15 0.75 0.04 0.03

10 0.00 0.00 0.88 0.12 0.00

sleep Wake S1 S2 SWS REM

micro.

11 0.01 0.05 0.77 0.07 0.10

12 0.02 0.12 0.77 0.04 0.05

13 0.45 0.41 0.12 0.00 0.02

14 0.03 0.16 0.09 0.00 0.72

15 0.06 0.11 0.68 0.00 0.15

16 0.00 0.00 0.04 0.96 0.00

17 0.00 0.00 0.98 0.02 0.00

18 0.00 0.00 0.50 0.50 0.00

19 0.88 0.07 0.02 0.00 0.03

20 0.01 0.07 0.64 0.00 0.28

Table 2.1: The weights representing the similarity between the sleep microstates and the
standard sleep stages. The dominant weight for each microstate is shown in bold.
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Figure 2.3: An example of the sleep probabilistic curves for sleep stages Wake, S1, S2,
SWS, REM. The blue curves represent a whole night profile of a 42–year–old healthy
man. Corresponding Rechtschaffen and Kales scores [Rechtschaffen and Kales, 1968] are
depicted in red.

2.3.2 Patients following an ischemic stroke

The PSM was applied to the set of the PSG recordings of 24 patients following an ischemic
stroke for which the results of neurocognitive tests and questionnaire about the sleep
quality were available.

In contrast to the subjects from the SIESTA database, the EEG signal from the frontal
pair of electrodes was not at disposal. Moreover, because of artefacts presence in the
EMG channel in the majority of subjects, the usage of the EMG signal was not possible.
Therefore we trained a new version of the PSM only on the EEG signal from the central
and occipital pair of electrodes. The order of the autoregressive model representing the
EEG signal was set to 10. The presence of artefacts in the EEG signal was automatically
detected by the BrainVision Analyser [Brain Products, GmbH, 2013] software and followed
by the manual inspection.
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In the previous analysis [Rošťáková, 2015] we observed that the PSM trained without
the information about the muscle activity is not able to properly distinguish between the
Wake and REM stage at the beginning of night. Therefore in the PSM training process
only the relationship between the sleep microstates and the nonREM sleep stages Wake,
S1, S2 and SWS were estimated (Table 2.2). When reconstructing the sleep probabilistic
curves for the standard sleep stages the REM stage was artificially added from the R&K
scores. In other words, if in a time window the REM stage was detected by R&K, the
probability for this stage was set to 1 while the probabilities for the Wake stage and the
nonREM stages were set to 0 (Figure 2.4).
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Figure 2.4: An example of the sleep probabilistic curves for the sleep stages Wake, S1, S2,
SWS, REM. The blue curves represent a whole night profile of a 44–year–old man after an
ischemic stroke. Corresponding Rechtschaffen and Kales scores [Rechtschaffen and Kales,
1968] are depicted in red.

Finally, we would like to pay attention to differences in wakefulness and light sleep
between patients after stroke and healthy subjects. The healthy sleepers reach higher
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probability values for the Wake stage, while the probability values for being in the S1 stage
are at most 0.3. In the case of patients after stroke an opposite phenomenon occurred
(Figures 2.3 and 2.4). This is mainly caused by similarity between this two stages and
different R&K scoring rules used for healthy sleepers and patients after stroke. The R&K
scores for the SIESTA database were obtained by the automatic scoring system Somnolyzer
[Anderer et al., 2005], while the EEG signal of patients after stroke was scored manually
by a trained physician who was likely to put more weight on the S1 stage.

sleep Wake S1 S2 SWS

microstate

1 0.37 0.50 0.07 0.06

2 0.42 0.54 0.02 0.02

3 0.03 0.31 0.22 0.44

4 0.02 0.28 0.42 0.28

5 0.22 0.68 0.08 0.02

6 0.01 0.44 0.44 0.11

7 0.25 0.65 0.07 0.03

8 0.00 0.05 0.20 0.75

9 0.00 0.24 0.19 0.57

10 0.05 0.59 0.25 0.11

sleep Wake S1 S2 SWS

microstate

11 0.01 0.15 0.19 0.65

12 0.04 0.21 0.44 0.31

13 0.01 0.44 0.25 0.30

14 0.13 0.81 0.04 0.02

15 0.11 0.76 0.12 0.01

16 0.04 0.51 0.34 0.11

17 0.00 0.21 0.49 0.30

18 0.00 0.08 0.24 0.68

19 0.00 0.02 0.12 0.86

20 0.12 0.71 0.08 0.09

Table 2.2: The weights representing the similarity between the sleep microstates and the
standard sleep stages. The dominant weight for each microstate is shown in bold.
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Chapter 3

Functional data clustering

The sleep probabilistic curves can be considered as functional data. Levitin et al. [2007]
defines functional datum as a set of measurements along a continuum, for example time.
From some point of view they are similar to the longitudinal data. The difference is that
the functional data are observed in pairs (ti, xi) where ti is the ith time point in which the
functional datum was observed and xi is observed value.

In the functional data analysis (FDA) dividing a given set of curves into subgroups
with common features is helpful for better understanding of an existing structure and
variability in data. We speak about functional cluster analysis.

The structure of the chapter is as follows. First, the definition of functional space,
corresponding inner product and the measures of distance between curves are given. Then
chosen methods for cluster analysis and rules for finding an appropriate number of clusters
are described.

3.1 Functional space

Let consider a functional space F of all square–integrable, real valued functions defined
on a time interval T . For simplicity we assume T = [0, 1], but the majority of methods
described below are able to work with a general time interval. This functional space is
the well–known L2[0, 1] space. In the text below both terms "curve" and "function" will
be used to label the elements of L2[0, 1].

The inner product of two functions X, Y ∈ L2[0, 1] is defined by the formula

〈X, Y 〉 =

∫ 1

0

X(t)Y (t)dt. (3.1)
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Consequently the L2 norm of a function X is defined as ‖X‖ =
√
〈X,X〉.

However, L2[0, 1] is an infinite dimensional functional space which may cause problems
in a statistical analysis. Therefore it is appropriate to map its elements into a finite
dimensional vector space using a dimensionality reduction method. The main idea is to
express each element of the space F by a linear combination of a finite set of basis functions
ϕ1, . . . , ϕK

X(t) =
K∑
i=1

aiϕi(t)

and then to work with the vector of coefficients a = (a1, . . . , aK)T .

3.2 Distance measures between curves

Let consider a pair of curves X, Y defined on a closed time interval T = [0, 1]. In this
section we focus on three distance measures which will play important role in the following
chapters. For more examples see [Montero and Vilar, 2014].

In a vector space the Minkowski distance between two vectors is very popular. Its
analogue for curves is

dn(X, Y ) =

(∫
T

(
X(t)− Y (t)

)n
dt

) 1
n

. (3.2)

Two curves are similar according to this measure if the area between them is small. With
n = 2 the formula (3.2) is called the L2 distance between curves X and Y .

A modified version of the criterion used in [Sangalli et al., 2010] forms another type of
distance criterion

dρ(X, Y ) = 1−
∫
T
X
′
(t)Y

′
(t)dt√∫

T
(X ′(t))2 dt

√∫
T

(Y ′(t))2 dt
. (3.3)

Here, dρ(X, Y ) ∈ [0, 2] and dρ(X, Y ) = 0 if and only if there exists a finite sequence
s0 = 0 < s1 < · · · < sm = 1 which divides the time interval T into m non–overlapping
subintervals and

X(t) = aiY (t) + bi, t ∈ [si−1, si) ,

ai ∈ R+, bi ∈ R, i = 1, . . . ,m.

The third criterion

d(X, Y ) =

√∫
T

(
sign(X ′(t))

√
|X ′(t)| − sign(Y ′(t))

√
|Y ′(t)|

)2
dt

23



is a special case of the Fisher–Rao metric. Here, sign represents the function signum

sign(x) =


−1, x < 0,

0, x = 0,

1 x > 0.

Advantages of this distance will be described in Section 4.3.3.

3.3 Methods for curve clustering

Let {X1, . . . , XN} be a set of curves defined over the time interval T which should be
divided into K clusters. Jacques and Preda [2014] distinguish three main approaches for
the functional data clustering.

The first one is called the raw data clustering. In real data representation, only a
discrete observation for each curve Xi, i = 1, . . . , N in a finite set of time points (knots)
{ti1, . . . , timi

} ∈ T is available. When the curves are observed over the same set of time
points, many methods developed for clustering vectors like the k–means or k–medoids are
appropriate also in the functional case.

The second approach is based on the idea, that the curves X1, . . . , XN belonging to a
possibly infinite dimensional functional space F may be expressed as a linear combination
of a functional basis ϕ1, . . . , ϕL

Xi(t) =
L∑
j=1

aijϕj(t), t ∈ T

The choice of the basis functions depends on the character of the data, for example Legen-
dre polynomials form functional basis for functions observed over interval [−1, 1] or for the
square–integrable functions of the L2[0, 1] space the Fourier basis is appropriate. Another
example are splines [Wahba, 1990]. The functional basis can be reconstructed also directly
from the data by the Functional principal component analysis (FPCA) [Yao et al., 2003],
for more details see Section 7.1.

Now, each curve Xi, i = 1, . . . , N is represented by its vector of coefficients ai =

(ai1, . . . , aiL)T , i = 1, . . . , N so the standard clustering tools for finite dimensional data
can be applied.

The third way of clustering functional data consists of standard methods like the
k–means method or hierarchical clustering in which the vector distance is replaced by
appropriate distance measure for curves.
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In the analysis of sleep data we prefer to use the modified k–means or k–medoids
methods following the idea of the later two approaches.

3.4 Number of clusters

The important part of clustering methods, for example the k–means or k–medoids algo-
rithm, is the selection of the number of clusters. However, because of a strong individuality
of sleep, which can be present in each subject’s curve, to choose a proper number of clus-
ters is a challenging task. Kodinariya and Makwana [2013] present an overview of criteria
for choosing an appropriate number of clusters K in multivariate data. Selected criteria
can be applied to functional data. Following these lines, in this thesis we used the

• rule of thumb, K ≈
√

N
2
, where N is the cardinality of the dataset.

• elbow diagram

Let consider a cost function with the number of clusters k as its argument repre-
senting the homogeneity of the constructed clusters

L(k) =
1

N

k∑
i=1

∑
j:Xj∈Ci

∫
T

(Xj(t)− µi(t))2 dt, (3.4)

µi(t) =
1

|Ci|
∑

j:Xj∈Ci

Xj(t),

where Ci represents the ith cluster i = 1, . . . , k, µi is its centroid and |Ci| represents
its cardinality. We call this cost function the L–criterion. Then values of the L–
criterion for the chosen clustering method are plotted as a function of the number
of clusters. This dependance is visually inspected and searched for a rapid drop
followed by a visible plateau. This rapid drop point is then selected for setting the
number of cluster K.

• average silhouette

The silhouette [Rousseeuw, 1987] represents tightness and separation of each cluster.
It reaches values from the interval [−1, 1] and shows how well a curve lies within the
cluster and which curves lay in between clusters. Let consider the curve Xj which
belongs to the ith cluster Ci, i = 1, . . . , k. Then its silhouette sil(k,Xj) is defined
as a normalised difference between the within–cluster homogeneity and separation
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from the rest of the dataset

sil(k,Xj) =
Hk
B(j)−Hk

W (j)

max{Hk
B(j), Hk

W (j)}
,

whereHk
W (j) is an average L2 distance betweenXj and other curves in the ith cluster.

The second term Hk
B(j) is an average distance between Xj and all curves from the

nearest cluster in the L2 distance sense. When sil(k,Xj) reaches its maximum,
sil(k,Xj) = 1, it means that Xj is well–clustered. Minimum value of sil(k,Xj)

implies that Xj is classified into incorrect cluster and sil(k,Xj) = 0 means that Xj

lies on a border between two clusters. We can also define the average silhouette (AS)

sil(k) =
1

N

N∑
i=1

sil(k,Xj)

which varies with k. Naturally, sil(k) is approximately 1 when k is close to N .
Therefore we restrict the value of k to be between 2 and N

2
. The optimal number of

clusters K is then chosen as the argument of the local maximum of sil. If there is
no visible global maximum of sil, then the optimal number of clusters is set to that
k after which sil reaches approximately constant values.

In general, there doesn’t exist a single criterion which would be ideal for all data. This
is because each rule classifies quality of clustering in a different way. In this thesis we
computed the optimal number of clusters according to different criteria and we chose the
value k which occurred the most frequently.

3.5 Relationship between the structure of clusters and

daily measures

The focused objective of our current research is to identify specific sleep profiles (sleep
biomarkers) associated with selected physiological aspects of sleep. An important proper-
ty of such sleep biomarkers would be their relationship with different physiological, de-
mographic or daily life measures. This may include physiological factors as blood pres-
sure, pulse rate or others, results of questionnaires about subjective sleep quality, mood,
drowsiness or results of neurophysiological tests focused on attention, fine motor activity
or short–term memory [Rosipal et al., 2013].

A standard approach how to achieve this goal is to extract one–dimensional sleep
variables from the R&K or PSM sleep models and then to compute their correlation with
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a daily measure represented by one of the tests or questionnaires listed in Table 1.1 [Rosipal
et al., 2013; Škoviera et al., 2014].

The advantage of the PSM is that the sleep probabilistic curves describe the whole
dynamic of the sleep process. However, the one–dimensional sleep characteristics extracted
from the PSM may miss some information about the sleep dynamics. Therefore we prefer
to use the whole sleep probabilistic curve information when detecting relationships between
the sleep structure and daily life behaviour.

One way of the sleep structure analysis is the transformation of possibly infinite dimen-
sional sleep probabilistic curves into a finite dimensional vector space by using the FPCA
(Section 7.1). Now, each curve is represented by a vector and standard tools from multi-
variate statistics can be applied. This approach was studied in [Rošťáková and Rosipal,
2018].

Another approach is to divide the set of all sleep probabilistic curves into subgroups
according to the similarity in their shape. We speak about cluster analysis of curves. An
overview of existing methods and discussion of problems which may occur during curves
clustering are described in the next chapters. Once the clusters are formed (by an arbitrary
method) we aim to detect, whether differences in the sleep profiles between clusters are
mirrored also in differences in daily measures. In general, the one–way ANOVA test can
be used for this purpose. However, because of presence of outlier values in the set of daily
measures we prefer to use its non–parametric version represented by the Kruskal–Wallis
test.
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Chapter 4

Time synchronisation of curves

In the previous chapter we described several approaches for the curves clustering. Once
the sleep probabilistic curves are assigned into clusters, it is possible to test whether
there is a significant difference in daily measures between clusters. Our preliminary study
[Rošťáková, 2015] showed existing relationships between the sleep structure and age, sub-
jectively scored sleep quality or the level of drive and drowsiness in the morning. However,
we hypothesised, that some relationships remained hidden because of the curves misalign-
ment.

We say, that two curves are similar, but misaligned in time, if they have a common
overall shape, but their important features like local maxima, minima or zero crossings
occur at different time points. Therefore, the criteria from Section 3.2 may reach high
values and consequently the clustering techniques will consider these curves as dissimilar
and assign them into different clusters.

To avoid this problem Ramsay and Silverman [2005] recommend to synchronise curves
before further analysis. In the literature the curves synchronisation problem is also known
as the curves alignment or curves registration and several methods were developed to solve
this problem.

At the beginning of this chapter problems of cluster analysis applied to in time mis-
aligned curves is demonstrated on artificially generated data. Then the curves alignment
is formulated in a rigorous mathematical way. Finally, a set of chosen approaches for the
curves registration is described in details and applied to the database of healthy sleepers.
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4.1 Problem of clustering of in time misaligned curves

Let consider five curves µ1, µ2, µ3, µ4, µ5 defined on the [0, 1] time interval

µ1(t) = 1.2e−20(t−0.7)
2 − e−50(t−0.45)2 + 1.2e−100(t−0.3)

2 − 1.2e−150(t−0.2)
2

+

+ e−200(t−0.15)
2 − 1.76e−300(t−0.05)

2

,

µ2(t) = µ1 (t− 0.1)− 0.6N

(
t− 0.8

0.01

∣∣∣∣∣0, 1
)

+N

(
t− 0.2

0.2

∣∣∣∣∣0, 1
)
,

µ3(t) = µ1 (t+ 0.1) +N

(
t− 0.8

0.01

∣∣∣∣∣0, 1
)
− 0.4N

(
t− 0.2

0.02

∣∣∣∣∣0, 1
)
,

µ4(t) =
1

0.25
N

(
2t− 1

0.25

∣∣∣∣∣0, 1
)
,

µ5(t) =
1

0.1
N

(
2t− 0.3

0.1

∣∣∣∣∣0, 1
)

+
1

0.1
N

(
2t− 1.5

0.1

∣∣∣∣∣0, 1
)

t ∈ [0, 1]. (4.1)

Here, N (t|0, 1) represents the probability distribution function of the normalised normal
distribution at the point t. These curves will serve as template curves. They were chosen
to be similar on short subintervals, but with different profiles when considering the whole
time interval [0, 1].

For the first three template functions we consider a sample of 10 curves, for µ4 and
µ5 this number was set to 20 curves. Curves Xi, i = 1, . . . , 70 = 3 × 10 + 2 × 20 were
generated by the following formula

Xi(t) = aiµ(gi(t))

where µ represents one of the template curves, the multiples ai, i = 1, . . . , N were obtained
as random samples from the normal distribution N (1, 0.1). The time transformations gi
were simulated as

gi(t) = c(t+ α2ie
t−α1i + b)

The normalising constants b and c guarantees that gi(0) = 0 and gi(1) = 1. Parameters α1i

and α2i were generated from the normal distribution N (0, 4) and N (1, 10−4) respectively.
An example of the data and template curves is depicted in Figure 4.1.

After applying the k–means algorithm with the L2 distance several curves were assigned
into incorrect cluster (Figure 4.2). The time misalignment caused that the curves originally
generated from the template curves µ3 and µ4 were assigned into the same cluster although
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their profile is different. On the other hand, the curves generated from the template µ5

were divided into two clusters.
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Figure 4.1: Example of simulated data (left) generated from five template curves defined
in (4.1) (right).
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Figure 4.2: Cluster analysis of the artificial data from Figure 4.1. Five clusters were
generated by the k–means algorithm (left), cluster representatives were computed as an
average curve of each cluster (right).

Except of clustering into incorrect group, also another problem occurred. Once the clus-
ters are formed, we would like to characterise them by one curve with the cluster–typical
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shape. However, when the curves are not in time synchronised the cluster representatives
can miss important features. For example, the peak of curves from the cluster 1 located in
the time interval [0.6, 0.8] (Figure 4.2, left) is missing in the cluster representative (Figure
4.2, right). All these problems stress the importance of applying the curve synchronisation
step before running cluster analysis.

4.2 Definition of the curve alignment problem

Curves with similar profile differ in a few ways. Ramsay and Silverman [2005] distinguish
two basic types of variation which can be present in the functional data – amplitude
and time variability. Two curves vary in the amplitude, if their important features like
local maxima or minima occur at the same time, but they have different height (Figure
4.3a). Time variation means that common features occur at different time points without
considering their height (Figure 4.3b). In this analysis we focus on the second type of
variability and methods for its removing or suppression.

0 0.2 0.4 0.6 0.8 1

time

0

0.5

1

1.5

2

X
i

(a) amplitude variability

0 0.2 0.4 0.6 0.8 1

time

0

0.5

1

1.5

2

X
i

(b) time variability

Figure 4.3: Example of two curves with similar profile varying in amplitude (left) and
time (right).

Let consider a pair of curves X1, X2 which are defined over a closed time interval T .
Without loss of generality we assume T = [0, 1]. To register or temporally align a pair of
curves X1, X2 means to find a function h : T → T from the set H of all strictly increasing
transformations of the time interval T such that

h ∈ argminh?∈H S (X1, X2 ◦ h?) , (4.2)
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where S is a measure of distance between two curves X1, X2; for example one of the
measures defined in Section 3.2. The time transformation h? is called the warping function.
An example of two in time misaligned smoothed sleep probabilistic curves, their aligned
version by using the criterion (3.2) and the corresponding warping function is depicted in
Figure 4.4.
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Figure 4.4: An example of two smoothed sleep probabilistic curves varying in time (left),
their aligned versions by using the criterion (3.2) (middle) and the corresponding warping
function (right). The original time was transformed into the interval [0,1].

There are many techniques developed for solving the problem (4.2). As we will see in
the following sections, they differ in the type of criterion S and in the algorithm used for
finding the appropriate warping function.

In addition to the assumption of strictly increasing warping function h we consider
three additional restrictions which appear frequently in literature:

• h is differentiable – the assumption is necessary when a cost function includes also
derivative of the warping function h

• the assumption of the common start and end point – the warping function h should
begin and end at the same time point as the real time. In other words

h(0) = 0, h(1) = 1.

• restriction to the distance between the real time and the warping function – the goal
of a registration method is to transform curves in time such that they are as similar
as possible. However, allowing the warping function to run too far from the real time
may result in rapid distortions of the curves profiles and consequently we can obtain
close to ideal alignment of possibly dissimilar curves. Therefore it is appropriate to
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add a constraint to the distance between the real time and warping function h into
the cost function, for example in the form

λ

∫
T

(
h
′
(t)− 1

)2
dt.

When the penalty parameter λ is small the warping function h can be far from the
physical time which can cause that distant segments of curves are aligned to each
other. On the other hand, large values of the penalty parameter restrict h to be
close to the real time which can lead to insufficient alignment. Appropriate λ can be
found for example by cross–validation. More examples of restrictions to the distance
between the warping function h and the real time can be found in [Srivastava and
Klassen, 2016, Chapter 8].

4.3 Current state of the curves alignment problem

In the literature there are many methods developed for solving the curves misalignment
problem. We can divide them into several groups according to the form of the warping
functions and the character of alignment.

The first group includes methods which consider only linear time transformations in
the form h(t) = at+b, a > 0, b ∈ R, for example the Constant time shift method [Ramsay
and Silverman, 2005], the k–mean alignment for the curve clustering [Sangalli et al., 2010]
or the Joint probabilistic curve clustering and alignment [Gaffney and Smyth, 2005]. Of
course, in this case the condition of the common start and end point is not taken into
account.

In practice, the curves misalignment has usually a nonlinear character, therefore the
majority of alignment methods are able to work also with nonlinear time transformations
under the condition of the common start and end point. This set of alignment methods
can be further divided into methods which align each curve to a common target curve and
methods based on alignment of each pair of curves separately. The first type of methods
is represented by the Self–modelling time warping method [Gervini and Gasser, 2004],
Curve registration using fractional polynomials [Bugli et al., 2005], the Registration to
the principal components [Kneip and Ramsay, 2008], the Elastic time warping method
[Tucker et al., 2013] or the Curves alignment by moments [James, 2007]. The second part
of methods includes the Pairwise curve synchronisation [Müller and Tang, 2008] or the
Dynamic time warping [Wang and Gasser, 1997].
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Following our practical experience with the time alignment of the sleep probabilistic
curves in this thesis we focus on

• the Self–modelling time warping (SMTW) [Gervini and Gasser, 2004],

• the Elastic time warping (ETW) [Tucker et al., 2013],

• the Pairwise curve synchronisation (PCS) [Müller and Tang, 2008].

4.3.1 Self–modelling time warping

Let consider a set of curves Xi : T → R, i = 1, . . . , N defined on the time interval
T = [0, 1]. Gervini and Gasser [2004] assume that the set follows the model

Xi(hi(t)) = aiµ(t) + εi(t), t ∈ T.

Here, µ is a differentiable target function. Random errors ε1, . . . , εN are modelled as
independent identically distributed (iid) stochastic processes with a zero mean function.
Coefficients a1, . . . , aN represent random multiples of the target function µ. They are
assumed to be iid with E(ai) = 1, i = 1, . . . , N. As in the previous sections hi : T →
T, i = 1, . . . , N represent strictly increasing warping functions satisfying the condition of
the common start and end point. Moreover we assume, that they are differentiable.

The main goal of the SMTW method is to find warping functions h1, . . . , hN , the target
function µ and the coefficients a1, . . . , aN which minimise the criterion

SSMTW (µ, a1, . . . , aN , h1, . . . , hN) =
N∑
i=1

∫
T

(Xi(hi(t))− aiµ(t))2 h
′

i(t)dt. (4.3)

If the warping functions hi, i ∈ {1, . . . , N} are known, Gervini and Gasser [2004] derived
explicit formulas for µ̂ and âi, i ∈ {1, . . . , N}. This leads to the iterative algorithm for
minimisation of (4.3),

• choose initial estimates ĥ1
0
, . . . , ĥN

0
,

• in the kth, k ≥ 1 step of iteration

– find µ̂k, â1k, . . . , âN
k by using ĥ1

k−1
, . . . , ĥN

k−1
, obtained in the previous itera-

tion and formulas derived in [Gervini and Gasser, 2004],

– update estimates ĥ1
k
, . . . , ĥN

k
of warping functions by the Newton–Rhapson

algorithm.
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Repeat these steps until the maximal number of iterations is not reached or until (4.3) is
under a chosen threshold.

Gervini and Gasser [2004] expressed the warping function as a sum of the real time
and a linear combination of B–splines B1, . . . , BL [Wahba, 1990] of a chosen order

hi(t) = t+
K∑
j=1

sij

L∑
l=1

pjlBl(t), i = 1, . . . , N, t ∈ T.

The coefficients pjl, j = 1, . . . , K; l = 1, . . . , L and sij, i = 1, . . . , N ; j = 1, . . . , K are con-
strained such that the condition of the common start and end point is satisfied. However,
the constraints do not guarantee that the warping functions h1, . . . , hN are strictly in-
creasing, only nondecreasing. The authors solve this problem by iteratively repeating the
Newton–Rhapson step in the algorithm until the estimated warping functions are strictly
increasing (see the MATLAB code with the implemented SMTW method which is avail-
able at the author’s webpage [Gervini, 2004]). In the original MATLAB code 20 iterations
are set as a default value for checking monotonicity. Gervini and Gasser [2004] claim
that in the majority of datasets this number of iterations is sufficient to obtain a strictly
increasing warping function. However, as we will show in Section 4.4 there are data where
even a larger number of repetitions doesn’t lead to strictly increasing warping functions.

In the light of these findings we need to consider a restriction to the warping function
h. A nondecreasing function main contain segments with a constant value over some short
intervals and therefore its first derivative is zero there. Because of that we modified the
cost function (4.3) by adding the following penalty term

S?SMTW (µ, a1, . . . , aN , h1, . . . , hN) = SSMTW (µ, a1, . . . , aN , h1, . . . , hN)

+ λ

N∑
i=1

∫
T

(
1

h
′
i(t)
− 1

)2

dt. (4.4)

The penalty avoids the estimate of the warping functions with the first derivative being
close to 0 because the expression 1

h′ (t)
, t ∈ T0 is large when h(t), t ∈ T0 is approximately

constant over the interval T0 ⊂ T . Moreover, to avoid alignment of very distant segments
of curves, the term 1

h′ (t)
should not go far from 1. The constant λ influences the weight of

the penalty. The main idea of the algorithm doesn’t change by adding the penalty term.
With the aim to find optimal penalty weight, we varied λ between 0 and 0.5 (λ > 0.5

led to poor or no alignment) and for each case the mean squared error MSE of aligned
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curves

MSE(X1 ◦ h1, . . . , XN ◦ hN) =
1

N

N∑
i=1

∫
T

(
(Xi ◦ hi)(t)−X(t)

)2
dt,

X(t) =
1

N

N∑
i=1

(Xi ◦ hi)(t)

was computed. As expected, the lowest MSE was obtained for λ = 0. The optimal λ
was then selected as the value after which the MSE was approximately constant or only
slightly increasing.

4.3.2 Pairwise curve synchronisation

The PCS method [Müller and Tang, 2008] solves the curves misalignment problem from
a different point of view. As for its name, this method aligns all possible pairs of curves
separately and after that for each curve a global warping function is estimated.

Let consider a set of curves X1, . . . , XN defined on the time interval T = [0, 1]. For
each pair of curves Xi, Xj, i 6= j our main objective is to identify the warping function
hij which minimises the following cost function with the restriction term controlling the
distance between the real time and the warping function

SPCS(Xi, Xj, hij) =

∫
T

(Xi(hij(t))−Xj(t))
2 dt+ λ

∫
T

(hij(t)− t)2 dt. (4.5)

Here we would like to highlight that hij 6= h−1ji in general, while SPCS is not symmetric
to a random warping. Exact methodology for finding appropriate value of the penalty
parameter λ can be found in [Müller and Tang, 2008; Müller, 2012].

Each warping function hij, i, j = 1, . . . , N is modelled in the following way

hij(t) =

p+1∑
k=0

τijkAk(t),

Ak(t) =
t− ak−1I[ak−1,ak)(t)

ak − ak−1
−
t− ak+1I[ak,ak+1)(t)

ak+1 − ak
, k = 0, . . . , p,

Ap+1 =
t− apI[ap,ap+1)(t)

ap+1 − ap
,

where τij0, . . . , τij(p+1) are unknown coefficient and 0 = a0 < a1 < · · · < ap < ap+1 = 1 is a
set of knots which divide the interval [0, 1] into p+ 1 subintervals of an equal length. The
indicator functions I[ak,ak+1), k = 0, . . . , p are defined by the following formula

I[ak,ak+1)(t) =

1, if t ∈ [ak, ak+1) ,

0, if t /∈ [ak, ak+1) .
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To satisfy the condition of the common start and end point τ0 = 0 and τp+1 = 1. Fur-
thermore the assumption τj+1 > τj, j = 0, . . . , p, guarantees that the estimated warping
functions are strictly increasing.

Once hij, i, j = 1, . . . , N are estimated, Müller and Tang [2008] define the global
warping function hi(t) for each curve Xi, i = 1, . . . , N

hi(t) =

(
1

N

N∑
j=1

hji(t)

)−1
, (4.6)

where the upper-script −1 represents the inverse function.
Truncated averaging procedure forms a more robust alternative to (4.6). It means that

only a pair of curves whose L2 distance after the warping process is less than a given
constant are used in the process of estimation of the global warping function

hi(t) =

(
N∑
i=1

hji(t)Id22(Xj◦hji,Xi)<ε∑N
l=1 Id22(Xj◦hjl,Xl)<ε

)−1
,

where d22 is the distance measure defined in (3.2). More details about the truncated version
of PCS can be found in [Müller and Tang, 2008; Tang and Müller, 2009]. A MATLAB
script which implements both, the original and truncated PCS method, is at disposal in
the MATLAB PACE toolbox [Müller, 2012].

4.3.3 Elastic time warping

The ETW method [Tucker et al., 2013] belongs to a set of registration methods which align
a set of curves to a target curve. Let consider a set X1, . . . , XN of absolutely continuous
functions defined over the time interval T = [0, 1]. In addition to the condition of the
common start and end point, Tucker et al. [2013] assume that the warping function h ∈ H
is a diffeomorphism which means that h is a differentiable function and there exists its
differentiable inversion function.

For each Xi, i = 1 . . . , N Tucker et al. [2013] define the square root slope function
(SRSF) by the formula

qXi
(t) = sign(X

′

i(t))
√
|X ′i(t)|, t ∈ T.

A curve Xi can be simply reconstructed from its SRSF qXi
by

Xi(t) = Xi(0) +

∫ t

0

qXi
(t)|qXi

(t)|dt. (4.7)
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The difference between ETW and other registration methods is in the definition of a
distance between two curves Xi, Xj

dETW (Xi, Xj) =

√∫
T

(
qXi

(t)− qXj
(t)
)2
dt, (4.8)

which is the standard L2 norm of the corresponding SRSFs. The advantage of (4.8) is its
invariance to a random warping h? ∈ H

d2ETW (Xi ◦ h?, Xj ◦ h?) =

∫
T

(
qXi◦h?(t)− qXj◦h?(t)

)2
dt =

=

∫
T

(
qXi

(h?(t))

√
dh?

dt
(t)− qXj

(h?(t))

√
dh?

dt
(t)

)2

dt =

=

∫
T

(
qXi

(t)− qXj
(t)
)2
dt = d2ETW (Xi, Xj)

and symmetry
dETW (Xi, Xj ◦ h) = dETW (Xi ◦ h−1, Xj)

in contrast to the standard L2 norm used in SMTW or PCS.
Instead of alignment of the original curves, the main idea of ETW is the alignment of

corresponding SRSFs to a target function called Karcher mean qµ [Tucker et al., 2013].
The warping functions h1, . . . , hN are found by minimising the criterion

SETW (hi) =

∫
T

(
qµ(t)− (qXi

◦ hi)(t)
√
h
′
i(t)

)2

dt, i = 1, . . . , N (4.9)

by the dynamic programming algorithm. More details about the algorithm can be found
in [Tucker et al., 2013] or in the documentation to the R package fdasrvf [Tucker, 2016].

The ETW method is one of the most powerful methods for curves registration. On
the other hand, because of no restrictions to the distance between the real time and
the warping function, ETW may produce close to ideal alignment of possibly dissimilar
curves. This problem will be demonstrated in Section 4.4. Fortunately, it is possible to
add a penalty to the cost function (4.9), for example

S?ETW (hi) = SETW (hi) + λ

∫
T

(
1−

√
h
′
i(t)

)2

, i = 1, . . . , N. (4.10)

Optimal value for the penalty parameter λ can be selected in a similar way as in the
modified SMTW algorithm (Section 4.3.1). Other types of penalties may be found in
[Srivastava and Klassen, 2016, Chapter 8].
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4.4 Application to sleep data

In this section we applied the above mentioned registration methods to the sleep proba-
bilistic curves of subjects without sleep problems from the SIESTA database. We would
like to highlight that the analysis of the sleep structure in the functional sense and the
time alignment of the sleep probabilistic curves are new approaches in the area of sleep
research and we are not aware of any other scientific teams which would consider this
approach.

The registration methods described in the previous sections require the assumption of
the common start and end point. In our case, the subjects went to bed approximately at
the same time, but the duration between the lights–off and falling asleep differed among
subjects. Therefore the starting point for each sleep probabilistic curve was set to the
sleep latency. Rechtschaffen and Kales [1968] define the sleep latency as three consecutive
periods (of length 30 seconds) of the S1 stage or the first appearance of the S2 stage,
whichever comes first.

To avoid noise the curves were smoothed by the FPCA and smoothing covariance
surface [Yao et al., 2003]. An interesting by–product of the smoothing procedure is a
reconstruction of the sleep probabilistic curves at the end of night according to behaviour
of the whole dataset, therefore the smoothed curves are defined on the common time
interval. For more details see [Yao et al., 2003].

In this section we focused on the time alignment of 146 sleep probabilistic curves
representing sleep Microstate 1 (85% S2) of the second night. We considered the SMTW,
PCS and ETW method for the registration. In the case of SMTW and ETW both, the
original and penalised versions were used.

Because of many different sleep profiles present in our sleep curves dataset (Figure
4.5a), the direct registration of the whole dataset doesn’t yield to reasonable results.
Specifically,

• the PCS method aligns each pair of curves separately and then for each curve the
global warping function is computed. However, because of the presence of many
different sleep profiles, the global warping functions were close to real time and
consequently the visual alignment of the sleep probabilistic curves was poor (Figure
4.5b).

• considering the original SMTW algorithm, unexpected flat segments occurred in se-
veral curves right after the starting point (Figure 4.5c). These flat segments were
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caused by improper penalisation of nondecreasing warping functions in SMTW (Fi-
gure 4.6) and due to the alignment of the curves with different profiles to one target.
After applying the proposed penalised version of the SMTW algorithm, the flat
segments diminished but at the cost of poor alignment of the curves (Figure 4.5d).

• the ETW method visually aligned the curves well (Figure 4.5e), but this is at the
cost of rapid changes of the curves profiles (Figure 4.7). The ETW method is one of
the most powerful methods for the curves alignment. However, when trying to align
sleep curves with different profiles to one target, the important curve elements were
shifted too far in time which may lead to misinterpretation of results. Considering
the penalised version of ETW with λ = 0.1 the curves were visually aligned better
than by PCS or SMTW, but the typical sleep profiles were difficult to detect.

Finally we can conclude that the sleep database includes too many different sleep
profiles and therefore the direct registration within each sleep microstate separately results
either in improper alignment or on the other hand in too ideal alignment of possibly
dissimilar curves and rapid distortions of the curves shapes. Therefore it would be better
to align only curves with similar shapes. However, this in turn leads us back to the cluster
analysis of the misaligned curves.

These observation underline the need for the approach which combines clustering and
curves alignment steps. In the next section we give an overview of existing methods for
simultaneous curves alignment and clustering and appropriateness of their application to
the analysed sleep data. In the centre of interest is our own method which is experimentally
validated and compared with existing approaches.
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(b) Pairwise curve synchronisation (PCS)
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(c) Self–modelling time warping (SMTW)
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(d) Modified SMTW with λ = 0.1

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

p
ro

b
a

b
ili

ty

time (hours)

(e) Elastic time warping (ETW)
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(f) Penalised ETW with λ = 0.1

Figure 4.5: Time alignment of 146 sleep probabilistic curves representing sleep Microstate
1 (85% S2). The curves were aligned by three different methods operating on the whole
dataset. In the case of the Self–modelling time warping (SMTW) and Elastic time warping
(ETW) both penalised and non–penalised versions of the algorithms were considered.
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Figure 4.6: A subset of curves from Figure 4.5c aligned by the Self–modelling time warping
algorithm (SMTW) (left) and corresponding warping functions (right). The constant
segments in warping functions at the beginning of night are depicted in red.
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Figure 4.7: Example of four sleep probabilistic curves representing Microstate 1. The
curves aligned by the ETW method (red) are shifted for more than one hour in comparison
to their original version (blue).
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Chapter 5

Methods for combination of the curves

alignment and cluster analysis

In the previous chapter we described the idea of the curves alignment. Three chosen
registration method were applied to the sleep probabilistic curves. However, because of
many different curves profiles none of the methods produced satisfactory results. We
observed that it is reasonable to first divide the curves with similar shapes and features
into homogeneous subgroups and then to register curves in each subgroup separately. In
other words, to apply cluster analysis before the registration process. But our initial goal
was to register misaligned data before the clustering step. This is due to the fact that
considering original misaligned curves may lead to improper assignment into clusters. It
looks like we are facing “the chicken and the egg” problem.

Fortunately, there exist algorithms which combine cluster analysis and curves align-
ment. Mainly, these are

• k–mean alignment for curve clustering (KMACC) [Sangalli et al., 2010],

• Joint probabilistic curve clustering and alignment (JPCCA) [Gaffney and Smyth,
2005],

• the truncated version of PCS [Tang and Müller, 2009] which can be viewed as an
algorithm which takes into account similarity between curves within the registration
process. In the thesis the abbreviation tPCS denotes the curves alignment produced
by the truncated PCS algorithm followed by the k–means clustering.

The first two methods KMACC and JPCCA operate with a linear transformation of
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time
h(t) = at+ b, a > 0, b ∈ R, t ∈ T

when solving the curves misalignment problem. However, this limits the flexibility of the
methods to deal with situations where a nonlinear transformation of time is needed. In
addition, we consider the same time interval for all sleep curves and therefore the only
possible choices for the a and b constants are a = 1 and b = 0, effectively producing no
alignment. Other values of a or b would annul the property of the common time interval.

The KMACC method considers either the L2 distance (3.2) or the distance measure
(3.3). The input are either original curves or their first derivatives. However, we miss
a restriction between the warping function and the real time. When we relaxed the as-
sumption of the common start and end point and tried to apply the KMACC algorithm
to the sleep probabilistic curves we observed poor alignment or the situation where the
curves were shifted for more than 4 hours and consequently they missed their physiological
interpretation.

The JPCCA method is based on a functional regression mixture model. The correct
cluster membership is considered as a latent variable, therefore the EM algorithm is used to
estimate unknown parameters in the model. However, when applied to our sleep data the
EM algorithm sometimes failed to converge due to the unstable estimation of covariance
matrices or the number of clusters collapsed to one.

The only algorithm combining the curves alignment and clustering which seems to
be appropriate for our sleep data is tPCS. However, the results produced by tPCS were
usually not satisfactory (Section 6.1). Therefore we designed our own 2–step approach
which consists of the Dynamic time warping based clustering and an arbitrary registration
method. This represents one of the important new contributions of this PhD thesis.

5.1 A 2–step approach for functional data clustering

To address the problems of the existing methods for combined clustering and registration
and also to introduce an algorithm with a higher flexibility of algorithmic choices in the
registration step, we propose a new 2–step approach.

We start with introducing a clustering method based on the Dynamic time warping
method [Wang and Gasser, 1997].
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5.1.1 Dynamic time warping as a clustering step

The DTW algorithm is a method which was a priori developed and used for aligning curves
with different lengths [Parsons, 1987]. In contrast to the other registration methods the
algorithm works directly with a discrete representation of curves.

Let suppose that two curves X1, X2 defined on the time interval T are observed at a
finite number of time-points

x1 = {X1(t1), . . . , X1(tn1), 0 = t1 < · · · < tn1 = 1},

x2 = {X2(s1), . . . , X2(sn2), 0 = s1 < · · · < sn2 = 1}.

It is not required that the sets of time-points {ti}n1
i=1 ⊂ T and {si}n2

i=1 ⊂ T are equal.
The main goal of the DTW method is to find the best match between curves X1 and

X2 by constructing the warping path w = {(il, jl), il ∈ {1, . . . , n1}, jl ∈ {1, . . . , n2}, l =

1, . . . ,WL}, which minimises the cost function

SDTW (X1, X2, w) =
∑

(il,jl)∈w

|X1(til)−X2(sjl)|, (5.1)

where WL is the length of the warping path w. This problem can be solved by using the
dynamic programming [Wang and Gasser, 1997].

In Section 4.2 we described several constraints on the warping function. With small
modifications the constraints are incorporated also in the DTW method, namely

• il−1 ≤ il and jl−1 ≤ jl, l ∈ {1, . . . ,WL} (monotonicity),

• i1 = 1, j1 = 1, iWL
= n1, jWL

= n2 (common starting and end point),

• il − il−1 ≤ 1, jl − jl−1 ≤ 1 (continuity),

• |il − jl| ≤ r, r ∈ N is a chosen constant which controls the distance between the
warping path and the real time. In the sleep data analysis we vary r between 30 and
50. We observed that this provides good performance.

In the simplest form the DTW algorithm is able to align only a pair of curves. Never-
theless, it results in an interesting by–product which is the distance measure 1 defined in
(5.1) and which we denote as dtw

dtw(X1, X2) = min
w

∑
(il,jl)∈w

|X1(til)−X2(tjl)|.

1We use the term “distance” despite the formula (5.1) does not show the symmetry property and
therefore it is not a real distance.
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In our thesis we use dtw for constructing a matrix Mdtw ∈ RN×N

(Mdtw)ij = dtw(Xi, Xj), i, j = 1, . . . , N. (5.2)

The matrix Mdtw represents a distance matrix which can be used in the hierarchical or
k–medoids functional data clustering algorithms [Montero and Vilar, 2014].

5.1.2 2–step approach

The general idea of the 2–step approach is based on a direct combination of the clustering
and registration steps into an iterative process, more specifically

i) In the first step, an initial clustering is done. Because at this first step the curves
are misaligned, the standard k–means or k–medoids algorithms does not lead to
reasonable results. Therefore, in this initial clustering step, we propose to apply the
DTW method with the aim to obtain the distance matrix Mdtw and then to apply
the k–medoids clustering algorithm operating on Mdtw.

ii) In the second step, we register misaligned curves separately in each cluster. In
practice, one of the above mentioned three algorithms (SMTW, PCS or ETW) or
their penalised versions can be used. The quality of alignment and clustering is
measured by the L–criterion (3.4).

iii) The third step consists of re–clustering of the aligned curves using the same clustering
approach as in the step i).

Steps ii) and iii) are the core steps of the 2–step approach for iterative clustering and
alignment and are repeated until one of the following stoping criteria is met

• the number of iterations exceeds a given threshold (in this thesis set to 100),

• the L–criterion is lower than a given small constant,

• clusters in the ith, (i− 1)th and (i− 2)th steps are not changed.

The chosen stopping criteria mimic those used in the standard clustering techniques, for
example [Lloyd, 1982; Kaufman and Rousseeuw, 1990]. Finally, the cluster membership
and aligned curves belonging to the iteration step with the smallest L–criterion are used
as the final result.
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From a mathematical point of view the 2–step approach represents an heuristic and
not a fully rigorous mathematical method. However, our long–term analysis of the sleep
data showed, that the sleep probabilistic curves are too difficult data for many existing
methods with a more complex mathematical background. These existing methods were
outperformed by the proposed approach.
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Chapter 6

The time alignment and cluster analysis

of the sleep probabilistic curves

In the functional data analysis the registration of in time misaligned curves is a standard
preprocessing step preceding further analysis [Ramsay and Silverman, 2005]. However,
when discussing the time alignment procedure of the sleep probabilistic curves with au-
thorities in the area of sleep research, two important questions occurred. First, don’t
we partially miss information about the sleep structure after the time alignment of the
curves? And if yes, for which sleep microstates the exact occurrence of periods of high
probabilities is important when detecting relationships between them and daily measures?

In this chapter we aimed to find answers to these questions by applying the 2–step
approach separately to the database of healthy sleepers and patients after stroke.

6.1 Cluster analysis of the sleep structure of healthy

sleepers

In order to demonstrate the benefit of the curves alignment we choose the tPCS algorithm
and the 2–step approach as representatives for the approaches combining the time align-
ment and the cluster analysis of the sleep probabilistic curves. The k–means clustering
of the raw sleep curves is also considered in this thesis and serves as a reference allowing
us to compare the obtained results with the clustering operating on in time misaligned
curves.

In the first step we performed the analysis of the sleep data from the SIESTA database.
To avoid possible misinterpretation of the results due to the first night effect, in this thesis
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only data recorded during the second night are considered.
The cluster analysis of the microstates is divided into five subsections according to the

similarity to the slow wave sleep (SWS), REM stage, S2 stage and finally wakefulness or
light sleep. Regarding to the 2–step approach we considered its version with the modified
SMTW method, PCS and penalised version of the ETW algorithm used in the registration
step; that is 2DTW–SMTW, 2DTW–PCS, 2DTW–ETW.

Average number k–means tPCS 2DTW– 2DTW– 2DTW–
silhouette of clusters –SMTW –PCS –ETW

Microstate 16 8 0.56 0.57 0.64 0.61 0.47
Microstate 8 9 0.33 0.34 0.48 0.44 0.46
Microstate 14 3 0.53 0.54 0.60 0.10 0.60
Microstate 1 2 0.77 0.79 0.79 0.64 0.80
Microstate 6 3 0.62 0.63 0.73 0.71 0.53

L-criterion number k–means tPCS 2DTW– 2DTW– 2DTW–
of clusters –SMTW –PCS –ETW

Microstate 16 8 0.40 0.39 0.26 0.33 0.19
Microstate 8 9 0.79 0.77 0.54 0.59 0.34
Microstate 14 3 4.55 4.51 2.71 5.01 1.77
Microstate 1 2 4.07 4.05 3.37 4.34 2.84
Microstate 6 3 1.02 1.01 0.78 0.85 0.73

Table 6.1: The average silhouette and the L–criterion eq. (3.4) values for methods used
to validate the alignment and clustering performance on 146 probabilistic sleep curves of
several microstates. The optimal number of clusters for each microstate is depicted in the
second column.

Microstates similar to SWS

Microstate 16 represents SWS with probability 96%. Using the L–criterion and average
silhouette (AS) the optimal number of clusters was set to 8.

The k–means clustering of misaligned curves and the tPCS algorithm produced similar
results (Figure 6.1). The tPCS algorithm was not able to properly align curves and
the pattern typical for SWS is difficult to detect. Using the 2–step approach, visual
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improvement in alignment of curves is depicted in Figure 6.2. A significant decrement in
the L–criterion together with the AS increment (Table 6.1) was also observed.

By considering the SMTW, PCS or ETW algorithm for registration in the 2–step
approach within each cluster separately, clusters of different structure were created. The
2DTW–SMTW and 2DTW–PCS approaches detected one big cluster including curves
with low probability values (cluster 7 in Figure 6.2a or cluster 4 in Figure 6.3). On
the other hand, using the ETW method with λ = 0, the 2–step approach was able to
distinguish three different clusters with low probability values (clusters 5, 6, 7 in Figure
6.2b). However, in Section 6.1.1 we will show, that all three clustering methods produced
similar relationships between the structure of Microstate 16 and daily measures.

Finally we observed, that for Microstate 16 all five approaches formed one cluster with
possibly an outlier profile (Figure 6.1 and 6.2).

Microstates similar to REM

Microstates 8 and 14 are similar to the REM stage with probabilities 74% and 72% respec-
tively. A clear periodic pattern is typical for the sleep probabilistic curves of both sleep
microstates. Using the L–criterion and AS, the optimal number of clusters for Microstate
8 was set to 9 and for Microstate 14 to three.

Considering the k–means clustering of misaligned curves or tPCS, the periodic pat-
tern in the formed clusters is difficult to detect (Figures 6.4a and 6.5a). Moreover, for
Microstate 8 both algorithms labeled one sleep profile as a possible outlier (cluster 1 in
Figure 6.4a). However, from the visual point of view the profile is not very different from
the shapes of the curves assigned to cluster 3 in Figure 6.4a.

A significant increment in the AS together with a decrement in the L–criterion was
observed when using the 2–step approach in comparison to tPCS or the k–means clustering
(Table 6.1). The three versions of the 2–step algorithm (2DTW–SMTW, 2DTW–PCS,
2DTW–ETW) produced equivalent results considering the AS values as well as visual
inspection of the curves in the formed clusters (Figure 6.4b).

In contrast, in the case of Microstate 14, the PCS algorithm used in the registration
step within the 2–step approach was not able to align the curves properly. An visual
improvement in alignment was observed only after considering the 2–step approach with
the SMTW or ETW method with λ = 0.02 (Figure 6.5b). Both versions of the 2–step
algorithm achieved approximately the same values of the AS and L–criterion.
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Microstates similar to S2

In this section we provide a detailed analysis of sleep Microstate 1 (85% S2). For all five
investigated methods, the most visible drop in the L–criterion was present for two clusters.
This choice of two clusters was also confirmed by the AS values.

The k–means algorithm applied to the misaligned curves (Figure 6.6a) divided the
whole set into two parts – curves with probability values of Microstate 1 under 0.4 and
curves with higher probability values. However, the typical sleep profile of each cluster is
difficult to detect.

Visually observed similarity between results obtained by the k–means clustering of
the misaligned curves and the curves aligned by tPCS before the k–means clustering is
mirrored also in similar values of the L–criterion and AS (Table 6.1).

The lowest value of the L–criterion together with the highest AS was reached when
using the 2DTW–SMTW version of the 2–step algorithm (Figure 6.6b). The data assigned
into the first cluster are visually aligned to three or four dominant peaks and some level
of alignment can also be noticed in the second cluster. The L–criterion decreased and a
higher AS value was observed for 2DTW–SMTW (Table 6.1) in comparison to the tPCS
or the k–means clustering of misaligned curves.

Microstates similar to Wake

The PSM distinguishes four sleep microstates related to the Wake stage or light sleep.
In this section we analyse only the most specific one – Microstate 6 (85% Wake) which
represents the periods of full awakening during and at the end of the night (Figure 6.7a).
The optimal number of clusters was chosen to be three.

The first two approaches – the k–means clustering of misaligned curves and tPCS
– formed the clusters according to the position and length of the awake time interval
at the end of the night. On the other hand, the 2–step approach with SMTW or PCS
distinguishes the first cluster with subjects being approximately one hour awake before
the final awakening, the second cluster with lower probability values for awakening during
the whole night and the third cluster with two possibly outlier profiles (Figure 6.7b). We
would like to highlight, that because of the alignment, the exact length of the time periods
of wakefulness is not taken into account in the process of forming the clusters. Influence
of this phenomenon on the relationships with daily measures will be discussed in Section
6.1.1.

When considering the ETW algorithm with λ = 0 (2DTW–ETW), rapid distortion
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of the curve profiles is visible (Figure 6.7c). Moreover, the AS is lower in comparison
to the 2DTW–SMTW or 2DTW–PCS methods, but also in comparison to the k–means
clustering of misaligned curves or tPCS.

Standard sleep stages

The same procedure was applied also to sleep probabilistic curves of the standard sleep
stages Wake, S1, S2, SWS and REM. In all five cases the optimal number of clusters was
set to two.

Using the k–means clustering of in time misaligned curves for the Wake stage, the
representatives of clusters are difficult to detect (Figure 6.8). On the other hand the
2DTW–SMTW algorithm divided subjects into clusters according to the position of a set
of peaks with higher probability for wakefulness during the night. For subjects assigned
into cluster 2 in Figure 6.8b two periods of wakefulness are typical – approximately in the
middle of the night and at the end of the night. A common feature of the subjects from
cluster 1 are two periods of wakefulness located at the end of the night. Occurrence of
short intervals of increased probability for the Wake stage in the first half of the night
represents individuality of subjects from cluster 1.

Sleep probabilistic curves for the S1 stage are upper bounded by the value 0.4. All five
considered methods led to similar structure of clusters (Figure 6.9). The tPCS, 2DTW–
SMTW and 2DTW–PCS algorithms were not able to align the curves properly and visually
they produced the same results as the k–means clustering of misaligned curves. Some kind
of alignment was observed only in the case of 2DTW–ETW with λ = 0.06 (Figure 6.9b).
In both clusters a periodic pattern and amplitude increasing with time is visible.

The S2 stage is the major part of sleep spent by humans. This is reflected in the
pattern of the sleep probabilistic curves with local maxima around 0.8. Similarly to the
S1 stage, the two clusters formed by any of the five methods differed especially in the
amplitude (Figure 6.10a). Considering the curves alignment produced by 2DTW–SMTW
(Figure 6.10b) a periodic pattern in both clusters was observed.

The most visible benefit of the curves alignment can be observed in the SWS and
REM stage. For both sleep stages a periodic pattern is typical. In the case of the SWS the
amplitude of peaks decreases with time, while for the REM stage the amplitude increases.
This pattern is present in clusters formed by 2DTW–SMTW (Figures 6.11b and 6.12b),
but it is difficult to detect in clusters formed from misaligned curves (Figures 6.11a and
6.12a).
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(a) The k–means clustering of misaligned sleep probabilistic curves
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(b) tPCS followed by the k–means clustering

Figure 6.1: Microstate 16. Clustering of 146 probabilistic sleep curves into 8 clusters
by using a) the k–means algorithm applied to misaligned curves and b) the truncated
version of the Pairwise curve synchronisation algorithm (tPCS) followed by the k–means
clustering.
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(a) The 2–step approach with the modified SMTW algorithm (2DTW–SMTW)
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(b) The 2–step approach with the ETW algorithm (2DTW–ETW)

Figure 6.2: Microstate 16. Clustering of 146 probabilistic sleep curves into 8 clusters
by using the 2–step approach with the modified SMTW or ETW algorithm used in the
registration step and k–medoids in the clustering step (2DTW–SMTW, 2DTW–ETW).
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Figure 6.3: Microstate 16. Clustering of 146 probabilistic sleep curves into 8 clusters
by using the 2–step approach with the PCS algorithm used in the registration step and
k–medoids in the clustering step (2DTW–PCS).
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(b) The 2–step approach with the modified SMTW algorithm (2DTW–SMTW)

Figure 6.4: Microstate 8. Clustering of 146 probabilistic sleep curves into 9 clusters by
using a) the k–means algorithm applied to misaligned curves and b) the 2–step approach
with the modified SMTW algorithm in the registration step and k–medoids in the clus-
tering step (2DTW–SMTW).
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(a) The k–means clustering of misaligned sleep probabilistic curves
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(b) The 2–step approach with the modified SMTW algorithm (2DTW–SMTW)

Figure 6.5: Microstate 14. Clustering of 146 probabilistic sleep curves into thee clusters
by using a) the k–means algorithm applied to misaligned curves and b) the 2–step ap-
proach with the modified SMTW algorithm in the registration step and k–medoids in the
clustering step (2DTW–SMTW).
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(a) The k–means clustering of misaligned sleep probabilistic curves
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(b) The 2–step approach with the modified SMTW algorithm (2DTW–SMTW)

Figure 6.6: Microstate 1. Clustering of 146 probabilistic sleep curves into two clusters
by using a) the k–means algorithm applied to misaligned curves and b) the 2–step ap-
proach with the modified SMTW algorithm in the registration step and k–medoids in the
clustering step (2DTW–SMTW).
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(a) The k–means clustering of misaligned sleep probabilistic curves
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(b) The 2–step approach with the modified SMTW algorithm (2DTW–SMTW)
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(c) The 2–step approach with the penalised ETW algorithm (2DTW–ETW)

Figure 6.7: Microstate 6. Clustering of 146 probabilistic sleep curves into three clusters
by a) the k–means algorithm applied to misaligned curves and the 2–step approach with
b) the modified SMTW algorithm or c) penalised ETW algorithm in the registration step
and k–medoids in the clustering step (2DTW–SMTW, 2DTW–ETW).
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(a) The k–means clustering of misaligned sleep probabilistic curves
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(b) The 2–step approach with the SMTW algorithm (2DTW–SMTW)

Figure 6.8: Wake stage. Clustering of 146 probabilistic sleep curves into two clusters by
using a) the k–means clustering of misaligned curves and b) the 2–step approach with the
modified SMTW algorithm in the registration step and k–medoids in the clustering step
(2DTW–SMTW).
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(a) The k–means clustering of misaligned sleep probabilistic curves
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(b) The 2–step approach with the ETW algorithm (2DTW–ETW)

Figure 6.9: S1 stage. Clustering of 146 probabilistic sleep curves into two clusters by
using a) the k–means clustering of misaligned curves and b) the 2–step approach with the
penalised ETW algorithm in the registration step and k–medoids in the clustering step
(2DTW–ETW).
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(a) The k–means clustering of misaligned sleep probabilistic curves
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(b) The 2–step approach with the SMTW algorithm (2DTW–SMTW)

Figure 6.10: S2 stage. Clustering of 146 probabilistic sleep curves into two clusters by
using a) the k–means clustering of misaligned curves and b) the 2–step approach with
the modified SMTW algorithm in the registration step and k–medoids in the clustering
step(2DTW–SMTW).
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(a) The k–means clustering of misaligned sleep probabilistic curves
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(b) The 2–step approach with the SMTW algorithm (2DTW–SMTW)

Figure 6.11: SWS stage. Clustering of 146 probabilistic sleep curves into two clusters by
using a) the k–means clustering of misaligned curves and b) the 2–step approach with the
modified SMTW algorithm in the registration step and k–medoids in the clustering step
(2DTW–SMTW).
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(a) The k–means clustering of misaligned sleep probabilistic curves
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(b) 2–step approach with the SMTW algorithm (2DTW–SMTW)

Figure 6.12: REM stage. Clustering of 146 probabilistic sleep curves into two clusters by
using a) the k–means clustering of misaligned curves and b) the 2–step approach with the
modified SMTW algorithm in the registration step and k–medoids in the clustering step
(2DTW–SMTW).
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6.1.1 Relationship between sleep structure and daily measures

In this section we aim to detect whether the clusters of sleep probabilistic curves formed
in the previous section significantly differ in the daily measures listed in Table 1.1. For
this purpose the nonparametric testing by the Kruskal–Wallis test was selected.

k–means tPCS 2DTW– 2DTW– 2DTW–
– SMTW –PCS –ETW

Microstate 16 FA2, age FA2, age FA2, age FA2, age FA2, age
(8 clusters) WB_m, VAS_drows VAS_drows

ACT_ts

Microstate 8 pul_e, pul_e pul_e, pul_e pul_e, pul_m
(9 clusters) dia_m, dia_e dia_m, dia_e dia_e, dia_m

ACT_sv age, NMT, age
FA1, FA2
VAS_aff, VAS_mood
VAS_drive, VAS_drows

Microstate 14 SRQ_scom, SRQ_scom SRQ_scom SRQ_scom SRQ_scom
(3 clusters) VAS_drive VAS_drive VAS_drive,

VAS_drows VAS_drows, VAS_drows,
SRQ_sq SRQ_sq
FA2, dia_e age

Microstate 1 ACT_sv, ACT_sv ACT_sv, ACT_sv
(2 clusters) ACT_errp,

VAS_aff VAS_aff, VAS_mood

Microstate 6 FA1, FA1, FA1,
(3 clusters) VAS_aff, VAS_aff, VAS_aff VAS_aff

VAS_drows VAS_drows,
VAS_mood VAS_mood VAS_mood

sys_m

Microstate 13 FA3, age FA3, age FA3, age FA3, age FA3, age
(4 clusters) SRQ_sq, SRQ_sq, SRQ_sq, SRQ_sq, SRQ_sq,

VAS_drows VAS_drows, VAS_drows, VAS_drows, VAS_drows
SRQ_scom, SRQ_scom,
VAS_drive, VAS_drive,
FA2, sys_e FA2, pul_e
ACT_sv, ACT_errp
FMAT_l, FMAT_r

Microstate 19 age age age, VAS_drive age, VAS_aff age
(2 clusters) FA2 FA2,

FMAT_r,
SRQ_sq,
SRQ_scom

Table 6.2: Sleep microstates. List of daily measures in which significant differences between
formed clusters were detected.
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Wake FA2, age, FA2, age FA2, age FA2, age, FA2, age,
(2 clusters) SRQ_sq SRQ_sq, SRQ_sq,

ACT_sv, sys_e ACT_sv

S1 FA1, FA2, FA3, FA1, FA2, FA3, FA1, FA2, FA3, FA1, FA2, FA3, FA1, FA2, FA3
(2 clusters) age, SRQ_scom age, SRQ_scom age, SRQ_scom, age, SRQ_scom, age, SRQ_scom,

VAS_drive, , VAS_drive, VAS_drive, VAS_drive, VAS_drive,
VAS_mood VAS_mood, VAS_mood, VAS_mood, VAS_mood,
VAS_drows VAS_drows VAS_drows VAS_drows VAS_drows

SRQ_sq,

S2 FA2, FA3, age FA2, FA3, age, FA2, FA3, age FA2, FA3, age FA2, FA3, age
(2 clusters) dia_e SRQ_aq,

ACT_errp

SWS FA2, age, FA2, age, FA2, age, FA2, age, FA2, age
(2 clusters) SRQ_scom, SRQ_scom, SRQ_scom, SRQ_scom,

ACT_sv ACT_sv ACT_ts,
pul_e, VAS_drows NMT

REM FA2, sys_m, FA2, sys_m FA2, sys_m, FA2, sys_m,
(2 clusters) WB_m, WB_e WB_m, WB_e

dia_m ACT_ts, age, dia_e pul_e dia_m

Table 6.3: Standard sleep stages. List of daily measures in which significant differences
between formed clusters were detected.

Microstates similar to SWS

The relationship between the structure of Microstate 16 and age or the physiological factor
FA2 was visible for both in time misaligned and aligned curves and for an arbitrary number
of clusters varying between 2 and 20.

Elderly people were assigned into clusters with lower probability values of SWS as
represented by Microstate 16, for example cluster 7 in the case of 2DTW–SMTW (Figure
6.2a) or cluster 1 when the k–means clustering was applied to the misaligned curves (Figure
6.1a). For these clusters higher values of the physiological factor FA2 are connected with
higher values of the blood pressure. On the other hand, clusters with clearly visible periods
of high probabilities of Microstate 16 were formed by younger people with significantly
lower values of the physiological factor.

Using the subjects’ class membership obtained by 2DTW–PCS or 2DTW–ETW, the
Kruskal–Wallis test detected significant differences in the level of drowsiness (VAS_drows)
in the morning. The subjects assigned into cluster 6 in Figure 6.3 showed significantly
increased drowsiness in the morning in comparison to the subjects from cluster 4. Similarly,
the subjects from cluster 2 in Figure 6.2b were more drowsy than the subjects from clusters
1, 6 or 7. Moreover, using the 2DTW–SMTW algorithm, a significant difference in the
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morning well–being (WB_m) was detected between clusters 4 and 5 (Figure 6.2a).

Microstates related to REM

In the previous section we set the optimal number of clusters for Microstate 8 (74%

REM) to 9. By considering the k–means clustering of misaligned curves we observed
that increased probability of this microstate is associated with the increased value of the
diastolic blood pressure both in the morning (dia_m) and in the evening (dia_e) and the
higher pulse rate in the evening (pul_e).

After applying the 2–step algorithm, the observed difference in the evening pulse rate
between formed clusters remained, but the significance of the difference in the morning or
evening diastolic blood pressure varied with the choice of the selected registration method
(Table 6.2). On the other hand, the 2DTW–SMTW approach detected a significant dif-
ference in the values of the physiological factor FA2 (which represents the systolic and
diastolic blood pressure both in the morning and in the evening) between clusters 8, 9 and
2 (Figure 6.4b). For the subjects assigned into cluster 2, higher values of FA2 together
with an increased probability of Microstate 8 are typical in comparison to the subjects
from clusters 8 or 9.

Significant differences in the level of drive (VAS_drive), mood (VAS_mood), affectivity
(VAS_aff) and drowsiness (VAS_drows) were observed. Cluster 4 in Figure 6.4b shows
clearly visible oscillatory pattern of high and low probability values of Microstate 8 and
the subjects from this cluster scored lower values of mood, affectivity or drowsiness in the
morning indicating their better subjective feeling in contrast to the subjects from clusters
8 or 9 for which low probability values of Microstate 8 were typical. Moreover, the subjects
from cluster 4 showed significantly lower values of the factor of subjectively scored sleep
and awakening quality FA1 in comparison to the subjects from cluster 8.

For the second REM–related Microstate 14 (72% REM) the optimal number of clus-
ters was set to three. Strong relationship with the subjective assessment of the somatic
complaints (SRQ_scom) and the level of drive or drowsiness in the morning was visible
for both aligned and misaligned curves.

The clusters formed by the 2DTW–PCS or 2DTW–ETW method significantly differ
also in the subjectively scored sleep quality questionnaire (SRQ_sq), but this effect was not
observed using the k–means clustering of the misaligned curves. Similarly to Microstate
8, increased probability for Microstate 14 helps to improve sleep quality and subjective
feelings in the morning. Moreover, the subjects assigned into the cluster with higher
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probability values of Microstate 14 showed significantly lower somatic complaints scores
(SRQ_scom) than the subjects with lower probability values (clusters 1 and 2 in Figure
6.5b).

Microstates similar to S2

Using the Kruskal–Wallis test, clusters of the sleep probabilistic curves of Microstate 1
(85% S2) significantly differed in the attention variability scored by the difference between
extreme scores of the Alphabetical cross–out test (ACT_sv) [Grünberger, 1977] whether
we considered misaligned curves or curves aligned by tPCS. After applying the 2DTW–
SMTW algorithm, this difference remained significant but we detected also significant
difference in the percentage of errors of the test (ACT_errp) between formed clusters.
Higher variability in attention and increased percentage of errors was related with increased
probability for Microstate 1.

Clusters formed by the k-means algorithm significantly differed in the level of affectivity
(VAS_aff) in the morning. Considering the tPCS, 2DTW–PCS or 2DTW–ETW algorithm
this significant difference diminished due to the changes in the cluster assignment caused by
the improper alignment. On other hand, clusters formed by the 2DTW–SMTW algorithm
significantly differed not only in the level of affectivity but also of mood (VAS_mood).
We observed, that increased probability for Microstate 1 (cluster 1 in Figure 6.6b) results
into impairment of mood and affectivity in the morning.

Microstates related to Wake

According to the results depicted in Table 6.2 we hypothesised that the structure of sleep
Microstate 6 (85% Wake) influences the subjects’ subjective feelings in the morning. Sub-
jects with about one hour of wakefulness before the final awakening (cluster 3 in Figure
6.7a) scored higher values of mood (VAS_mood) or affectivity (VAS_aff) and they felt
more drowsy in contrast to the other subjects from cluster 2 in Figure 6.7a. Similar phe-
nomenon was observed also in the case of the factor of subjectively scored sleep quality
(FA1). Considering the 2–step approach no new results were observed in comparison to the
misaligned case. By applying 2DTW–ETW, existing relationship with FA1 or drowsiness
disappeared after the alignment (Table 6.2).

The relationship between increased probability values of Microstate 13 (45% Wake, 44%

S1) and the worst subjectively scored sleep quality (SRQ_sq) or increased drowsiness in
the morning was strong and it was visible in the case of the misaligned as well as in time
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aligned curves. Moreover, the subjects above 60 years of age have higher probability values
for this microstate in contrast to the younger people under 40 years of the age. On the
other hand, better performance in the cognitive tests represented by the neurophysiolo-
gical factor (FA3) was typical for clusters with lower probability values of Microstate 13.
Considering the 2DTW–SMTW algorithm, similar relationship was observed also in the
case of the other cognitive tests (FMAT_l, FMAT_r, ACT_sv, ACT_errp). Subjects
with the periods of increased probability of Microstate 13 reached lower scores in the tests
in comparison to the subjects with the increased probability of this microstate only at the
end of the night.

The 2DTW–SMTW and 2DTW–ETW algorithms formed clusters which significantly
differ in the level of drive (VAS_drive) in the morning as well as in the physiological factor
FA2 (Table 6.2).

Microstate 19 (88% Wake) is also similar to wakefulness. Considering the misaligned
curves, the clusters formed by the k–means algorithm significantly differ only in age (Table
6.2). As expected, increased probability for this microstate was typical for elderly people
above 60 years. After the curves alignment produced by the 2–step approach, the formed
clusters differ also in daily variables representing subjective feelings in the morning like
VAS_drive or SRQ_sq, SRQ_scom. Similarly to Microstates 13 or 6, the cluster with a
higher probability of wakefulness scored their subjective sleep quality and somatic com-
plaints worse than the subjects from clusters with low probability values of Microstate
19.

Standard sleep stages

In the previous section we observed that the curves alignment seems to be counterproduc-
tive for one of the wake–related sleep microstates, but for the others it helped to improve
the detection of existing sleep and daily measures relationships. When considering the
Wake stage, the k–means clustering and the 2–step approach produced similar structure
of clusters (Figure 6.8). Consequently, similar significant differences between the formed
clusters were detected (Table 6.3). We observed, that the cluster with higher probability
values of the Wake stage in the first half and at the end of night (cluster 2 in Figures 6.8a
and 6.8b) was formed especially by older people (above 60 years of age), while for the
subjects under 40 years lower probabilities for wakefulness during the night were typical.

Moreover, the two clusters formed by an arbitrary method significantly differed in the
values of the physiological factor FA2 (Table 6.3). We observed that increased wakefulness
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was related with higher values of FA2. Recall, that FA2 represents mainly morning and
evening blood pressure and the effect of age was removed from all daily measures (Section
1.2).

Finally, the formed clusters significantly differed in the subjectively scored sleep qual-
ity (SRQ_sq). As expected, higher probability for the Wake stage were connected with
the worst sleep quality. However, after the curves alignment, either by using the 2–step
approach or tPCS, this phenomenon diminished. Therefore we hypothesise that similarly
to Microstate 6, the curves alignment does not bring many advantages in the case of the
Wake stage.

The S1 stage is very similar to the Wake stage and therefore we expected analogical
results for these two stages. However, our expectations were not fully fulfilled. Increased
probability for light sleep (cluster 1 in Figure 6.9) was related to the higher age and higher
values of FA2. But in contrast to the Wake stage, slightly higher probability values for the
S1 stage during the whole night positively influence the subjective feelings in the morning
(SRQ_scom, VAS_drive, VAS_mood, VAS_drows, FA1) and resulted into better scores
in the neurocognitive tests represented by FA3.

In the previous section we observed that the 2DTW–SMTW approach outperformed
standard clustering of misaligned curves when detecting relationships with daily measures
especially when considering sleep microstates related to S2 and SWS. This was true also
when considering the sleep probabilistic curves mimicking the R&K stages S2 and SWS.

Using any of the considered clustering method, the clusters of S2 or SWS sleep proba-
bilistic curves (Figures 6.10 and 6.11) significantly differ in FA2 and age. In both cases
slightly higher probability of the S2 stage (cluster 1 in Figure 6.10b) or higher probability
for SWS with typical periodic pattern and in time decreasing amplitude of peaks (cluster
1 in Figure 6.11b) were connected with lower values of FA2 or age. This is consistent with
the observations made in the case of the Wake or S1 stages. In the case of the S2 stage the
formed clusters differed also in the FA3 values which indicates that a higher probability
for the stage is related to improved performance in the neurocognitive tests.

In the case of the REM stage, the two clusters formed by any of the considered clus-
tering method significantly differed in values of FA2 and also systolic blood pressure in
the morning (sys_m). But due to the curves misalignment the clusters depicted in Figure
6.12a were difficult to interpret. Using the 2DTW–SMTW algorithm we saw, that for
the first cluster a periodic pattern of the REM stage with four dominant in time slightly
increasing peaks is typical. The subjects assigned into this cluster showed higher values
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of FA2 and sys_m. Moreover, especially the subjects above 60 years of age were assigned
into this cluster, the younger subjects have shown more periods of the REM stage (cluster
2 in Figure 6.12b). However, the difference in age was not significant when considering
the clusters formed by the k–means method or tPCS.

6.1.2 Discussion and Conclusion

In this section we validated the proposed 2–step iterative approach and demonstrated
that the method outperforms the truncated PCS algorithm or k–means clustering of the
misaligned curves. A visually good alignment was produced especially by the 2DTW–
SMTW method and this was also mirrored by the decrease of the L–criterion and AS
increase.

In the 2–step approach an arbitrary method may be used for the alignment of curves
within clusters, for example SMTW, PCS or ETW. All three versions of the 2–step ap-
proach worked well and led to similar results when the optimal number of clusters was set
to 8 or higher. However, in the case of a smaller number of clusters, for example two or
three, the 2DTW–PCS version of the 2–step algorithm produced inferior alignment. In
this case, 2DTW–SMTW or 2DTW–ETW produced better results.

To achieve our main goal – to detect relationships between sleep structure and daily
measures – we tested whether the differences in daily measures between formed clusters
are significant or not. Relationship between SWS or wakefulness and age or subjectively
scored sleep quality was so strong, that it was also visible when considering clusters of the
original, in time misaligned, sleep curves. However and importantly, after applying the
2–step approach new correlations between sleep structure and age or daily measures were
found.

First, we observed, that higher probability values for Microstate 16 (96% SWS, cluster 2
in Figure 6.2a) resulted in increased drowsiness in the morning. However, this phenomenon
was not visible when considering misaligned sleep probabilistic curves.

When considering in time misaligned sleep probabilistic curves of the REM–related
sleep Microstates 8 and 14, the relationship with the subjective feelings in the morning
was visible only for Microstate 14. After applying the 2–step approach we observed that
increased probability of Microstate 8 is related to the better subjectively scored level of
mood, drive, drowsiness or affectivity in the morning.

The relationship between increased wakefulness during the night and worse subjec-
tive feelings in the morning is well known [Rosipal et al., 2013]. The cluster analysis of
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misaligned sleep probabilistic curves of Microstates 6 or 13 confirmed this expected re-
lationship. However, because of the curves misalignment, the relationship between the
structure of the Wake–related sleep Microstate 19 and subjective feeling scores in the
morning remained hidden. In contrast, after applying the 2–step approach we detected
that increased probability of Microstate 19 is related to worse subjective scores of the sleep
quality and increased somatic complaints.

In Rošťáková and Rosipal [2018] we observed that the curves alignment produced
by the ETW algorithm is counter–productive when predicting results of daily measures
by the structure of the Wake stage and wake–related sleep microstates. Similar results
were observed for Microstate 6 representing the full wakefulness during the night and the
Wake stage. Significant differences in FA1, the level of affectivity or subjectively scored
sleep quality (SRQ_sq) between clusters of misaligned curves diminished after the curves
alignment. It seems to be that the exact timing of the periods of increased probability
of wakefulness during the night is important when the detection of existing relationships
with daily measures is in the focus.

When considering the standard R&K sleep stages Wake, S1, S2, SWS or REM, we
observed increased wakefulness for elderly people, while in the case of younger subjects
higher probability values for the S2 or SWS stages dominated the profiles of the clustered
curves. This was observed using for both misaligned and aligned curves. The result is
consistent with ageing changes in sleep described in [MedlinePlus - Health Information
from the National Library of Medicine, 2018].

The statistically significant relationship between the age and REM stage was not ob-
served when considering the k–means clustering of in time misaligned sleep probabilistic
curves. Thanks to the curves alignment we detected that for elderly people a lower number
of the REM stage periods is typical.

Finally, we can conclude, that the 2–step approach is a useful tool in the analysis of the
sleep probabilistic curves. We hypothesise that because of its observed good performance
when applied to non-trivial sleep probabilistic curves, the method can also be used in a
wider range of functional data clustering tasks.
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6.2 Cluster analysis of the sleep structure in patients

after stroke

Investigating relationships between sleep structure of 24 patients after ischemic stroke and
daily measures is in the centre of interest of this section. In contrast to the dataset of
healthy sleepers the information about the patients’ physiological measures; for example
the pulse rate or blood pressure, was not available. In the morning, following the night
with the PSG recording, the patients took part in a battery of neuropsychological tests;
the Lateralised attention network test (LANT) [Greene et al., 2008], Fine motor activity
test (FMAT2), Working memory test (WMT) [Kaufman and Lichtenberger, 2005] and
Reaction time test (RTT) (Table 1.2). Right before and after testing they also filled in
the T–MENSTAT questionnaire [Pacific Development and Technology, LCC, 2012] about
subjectively scored feelings after awakening.

6.2.1 Relationship between sleep structure and daily measures

Similarly as in the case of the SIESTA database we aimed to detect existing relationships
between the sleep structure and the results of daily measures of patients after ischemic
stroke. In this case we used the 2–step approach with the modified SMTW algorithm in
the registration step (2DTW–SMTW).

In the case of healthy sleepers we observed that for one wake–related sleep microstate
and for the Wake stage the curves alignment led to inferior results. Therefore the k–means
clustering of misaligned sleep probabilistic curves was considered as well.

Because of a small number of subjects we varied the number of clusters between two and
10. The optimal number of clusters was again selected by using the AS and L–criterion.

However, not all subjects took part in the whole battery of daily tests, for example
the complete results of the LANT were available only for 19 subjects or only 17 subjects
performed the complete FMAT2. Therefore the procedure for finding the optimal number
of clusters and the cluster analysis were repeated for each daily measure separately by
considering only the patients with non–missing values.
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k–means 2DTW–SMTW

Microstate 1 LANT_RVF_OF
(2 clusters) FMAT2_cp1, FMAT2_cp2

FMAT2_cp4

Microstate 16 FMAT2_cp1, FMAT2_sp1
(3 clusters)

Microstate 6 FMAT2_sp3, FMAT2_sp6
(3 clusters)

Microstate 5 LANT_A
(4 clusters)

Microstate 10 RTT_3 RTT_3
(2 clusters)

Microstate 4 LANT_OI, WMT_bw LANT_OI, WMT_bw,
(2 clusters) T–MENSTAT_A_1 T–MENSTAT_A_1

Microstate 12 RTT_3 RTT_3
(2 clusters)

Microstate 11 RTT_min, RTT_4, RTT_min, RTT_4
(2 clusters) LANT_C, LANT_LVF_A,

LANT_LVF_OF
T–MENSTAT_B_3,4

Microstate 19 NIHSS NIHSS
(2 clusters)

S1 RTT_min, RTT_4
(2 clusters) FMAT2_sp4, WMT_bw

S2 LANT_A, LANT_RVF_A LANT_A, LANT_RVF_A
(2 clusters)

SWS WMT_bw WMT_bw
(2 clusters) T–MENSTAT_B_2,3,4

Table 6.4: List of daily measures in which significant differences between formed clusters
of patients after stroke were detected.
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Sleep microstates similar to the Wake stage or light sleep

Sleep Microstate 1 (50% S1) represents light sleep. According to the values of the AS
and L–criterion, the optimal number of clusters was set to two (Figure 6.15a) for all daily
measures. Only 17 patients after stroke performed the whole battery of the Fine motor
activity test (FMAT2). The 2DTW–SMTW approach formed two clusters which signifi-
cantly differ in the number of correctly retraced pixels in patterns 1, 2 and 4 (FMAT2_cp1,
FMAT2_cp2, FMAT2_cp4) (Figure 1.3). The three subjects from cluster 1 in Figure
6.15a with higher probability values for the microstate showed significantly more correctly
redrawn points in comparison to 14 subjects from the second cluster.

Similar result was observed for Microstate 16 (51% S1). The optimal number of clus-
ters was set to three. Ten subjects from the first cluster in Figure 6.15b with close to
zero probability values during the whole night were not able to retrace the pattern 1 as
successfully as their six colleagues from cluster 2. The third cluster includes one subject
with possibly an outlier profile.

Three clusters were set as optimal also for Microstate 6 (43% S1, 44% S2). However,
in comparison to Microstates 1 and 16, different results for the FMAT2 were observed.
Four subjects assigned into the second cluster (Figure 6.15c) showed significantly fewer
successively redrawn pixels in patterns 3 and 6 in contrast to six subjects from the first
cluster.

For Microstate 5 (68% S1) and 19 subjects who completed the LANT the optimal
number of clusters was set to four. The subjects assigned into the first and second cluster
in Figure 6.13 reached negative (and therefore better) LANT_A scores and significantly
differed from the subjects from clusters 3 and 4 with positive scores in the test.

Finally we observed a relationship between the increased probability for Microstate 10
(59% S1) and increased reaction time (Table 6.4).

Sleep microstates similar to the S2 or SWS stage

The sleep probabilistic curves for Microstate 4 (28% S1, 42% S2, 28% SWS) of 23 patients
who took part in the Working memory test (WMT) were divided by 2DTW–SMTW into
two clusters (Figure 6.14). We observed, that increased probability for the microstate led
to better scores in the backward part of the WMT (WMT_bw) as well as in LANT_OI.
On the other hand, higher probability values for the microstate were connected with
subjectively decreased level of energy or motivation before the neurocognitive testing as
reflected by lower scores in T–MENSTAT_A_1.
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The structure of sleep Microstates 12 (44% S2, 31% SWS) and 11 (65% SWS) influence
subject’s reaction times, but in different ways. In both cases the optimal number of clusters
was set to two for 23 subjects. The patients after stroke with increased probability for
Microstate 12 showed shorter reaction times, on the other hand the higher probability for
Microstate 11 resulted into increased reaction times (Table 6.4).

After performing the whole battery of neurocognitive tests only 19 patients filled in
the T–MENSTAT questionnaire (T–MENSTAT_B). When considering Microstate 11, the
structure of clusters formed by the k–means algorithm and 2DTW–SMTW differed only
in the assignment of one curve (Figure 6.17). It is difficult to visually decide, whether the
green curve in Figure 6.17a belongs to the second cluster or its profile is similar to curves
from cluster 1. However, the second cluster produced by the k–means clustering showed
significantly higher subjective level of frustration and drowsiness (T–MENSTAT_B_3, T–
MENSTAT_B_4). This effect disappeared after the 2DTW–SMTW clustering. Therefore
we speculate that the observed relationship between the structure of Microstate 11 and
the level of frustration and sleepiness was a random. To confirm this speculation a wider
cohort of patients after stroke would be needed.

Considering the k–means clustering of the sleep probabilistic curves for Microstate 11,
the clusters significantly differed in several components of the LANT (Table 6.4). However,
the p–values approximately equal to 0.046 indicate that the significance of the differences
may be caused only by a chance and the assignment of several misaligned curves into an
incorrect cluster. This observation was confirmed by the 2DTW–SMTW approach, where
no significant differences in the LANT components where observed between clusters.

Finally, Microstate 19 (86% SWS) reflects the severity of stroke. The optimal number
of clusters was chosen as two. The subjects with higher NIHSS values and therefore with
more severe stroke were assigned into the cluster with higher probability values for this
microstate (Figure 6.18).

Standard sleep stages

In addition to sleep microstates we performed the cluster analysis of sleep probabilistic
curves mimicking the standard R&K sleep stages. Recall, that in the case of patients after
stroke only probabilistic curves for the Wake stage and the nonREM stages were available
(Section 2.3.2).

There was no difference in daily measures observed between clusters based on the
structure of the Wake stage.
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In the case of the S1 stage the optimal number of clusters was set to two. The Kruskal–
Wallis test found no significant differences in daily measures between clusters formed by
2DTW–SMTW. On the other hand, considering the k–means clustering of misaligned
curves, the subjects assigned into the cluster with higher probability values for light
sleep showed significantly higher reaction times (RTT_min, RTT_4) and worst scores
in the WMT (WMT_bw). On the other hand, they performed better in the FMAT2
(FMAT2_sp4) in comparison to their colleagues with lower probability values for the S1
stage (Figure 6.19).

Considering the character of the S2 stage, the two clusters depicted in Figure 6.20
significantly differ in the results of LANT_A and LANT_RFV_A. The second cluster
with higher probability values for the S2 stage across the whole night includes subjects
with lower and therefore better scores in both LANT_A and LANT_RVF_A components
of the LANT.

Considering SWS, two clusters formed by 2DTW–SMTW (Figure 6.21) significantly
differ in the results of the backward part of the WMT (WMT_bw) and the T–MENSTAT
questionnaire filled in after the neurocognitive testing (T–MENSTAT_B_2,3,4). Subjects
assigned into the cluster with higher probability values for SWS remembered, on average,
more digits in the backward order and felt less drowsy, exhausted or frustrated after testing
than their colleagues with lower probability values for SWS.

6.2.2 Discussion and Conclusion

In this section we applied the 2–step approach for curves clustering and alignment on the
dataset of patients after stroke. We observed that increased probability of sleep microstates
similar to light sleep (Microstates 1 and 16) helped to improve performance in the FMAT2.
Similar result was observed when considering the curves representing the S1 stage. On
the other hand, increased probability for Microstate 6, representing the “border” between
stages S1 and S2, leads to the opposite results.

Considering light sleep we also observed that subjects with higher probability values
for sleep Microstate 5 performed better in the LANT_A component of the LANT. When
considering the standard R&K sleep stages the only relationship with the LANT_A com-
ponent was observed for the S2 stage.

Increased probability for microstates laying on the border between the S2 stage and
SWS lead to the improved reaction times while the structure of microstates related only
to SWS influences the reaction speed in a negative way. Moreover, sleep Microstate 4 or
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SWS showed relationships with the results of the backward part of the WMT and the
T–MENSTAT questionnaire. The subjects with increased SWS during the whole night
felt subjectively less drowsy, exhausted or irritated after performing the whole battery of
neurocognitive tests.

Finally we observed that higher probability values for Microstate 19 similar to SWS
are typical for subjects following more severe stroke (higher NIHSS).

The benefit of the 2–step approach in comparison to the k–means clustering of in time
misaligned curves was not evident. This may be due to a small number of subjects and
clusters. Considering the S2 or SWS stages and with them associated sleep microstates, the
k–means clustering of misaligned curves produced the same results as the 2DTW–SMTW
approach.

In the case of the S1 stage we observed that similarly to the clustering of the Wake
stage curves of healthy sleepers, the time alignment seems to be counterproductive. In
other words, the exact occurrence of the periods of light sleep is important when detecting
relationships with the studied daily features. However, we observed the opposite phe-
nomenon in the case of sleep microstates related to light sleep, where the time alignment
helped to detect otherwise hidden relationships. Note that these analysed microstates
show not negligible weights also for the S2 stage (Microstates 6, 10 or 15).

Overall, we need to stress that due to a small number of patients these observations
and conclusions can be viewed only as preliminary.
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Figure 6.13: Microstate 5. Clustering of sleep probabilistic curves into four clusters by
the 2DTW–SMTW algorithm. 19 patients who completed the LANT were included in the
analysis.
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Figure 6.14: Microstate 4. Clustering of sleep probabilistic curves into two clusters by
the 2DTW–SMTW algorithm. 23 patients who completed the Working memory test were
included in the analysis.
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(a) Microstate 1
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(b) Microstate 16
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(c) Microstate 6

Figure 6.15: Microstates 1, 16 and 6. Clustering of sleep probabilistic curves representing
light sleep by the 2DTW–SMTW algorithm. 17 patients who completed the Fine motor
activity test were included in the analysis. The optimal number of clusters for Microstate
1 was set to two, for Microstates 16 and 6 it was set to three.
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(a) Microstate 11
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(b) Microstate 12

Figure 6.16: Microstates 11 and 12. Clustering of sleep probabilistic curves into two
clusters by the 2DTW–SMTW algorithm. 23 patients who completed the Reaction time
test were included in the analysis.
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(a) k–means
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(b) 2DTW–SMTW

Figure 6.17: Microstate 11. Clustering of sleep probabilistic curves into two clusters by
the k–means algorithm or 2DTW–SMTW. 19 patients who filled in the T–MENSTAT_B
questionnaire were included in the analysis.
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Figure 6.18: Microstate 19. Clustering of 24 probabilistic sleep curves into two clusters
by the 2DTW–SMTW algorithm.
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Figure 6.19: S1 stage. The k–means clustering of in time misaligned sleep probabilis-
tic curves into two clusters. 23 patients who completed the Working memory test were
included in the analysis.
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Figure 6.20: S2 stage. Clustering of sleep probabilistic curves into two clusters by the
2DTW–SMTW algorithm. 19 patients who completed the LANT were included in the
analysis.
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Figure 6.21: SWS. Clustering of sleep probabilistic curves into two clusters by the 2DTW–
SMTW algorithm. 23 patients who completed the Working memory test were included in
the analysis.
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Chapter 7

Multilevel functional principal

component analysis

Multilevel functional data are data observed over a continuum, for example time, with
repeated measurements. In the SIESTA database [Klösch et al., 2001] for each subject
the PSG recordings of the two consecutive nights are available. Similarly, the results of
cluster analysis of the sleep probabilistic curves can be viewed as an example of multilevel
functional data. Now, each cluster is an “object” and curves assigned into this cluster are
repeated observations of the object.

Functional principal component analysis (FPCA) is the key technique for dimensio-
nality reduction and detection of main directions of variability present in functional data.
However, it is not the most suitable tool for the situation when analysed dataset contains
repeated or multiple observations, because information about repeatability of measure-
ments is not taken into account. Multilevel functional principal component analysis (MF-
PCA) [Di et al., 2009] is the modified version of FPCA developed for data observed at
multiple visits or measurements.

The chapter is organised as follows: First a short introduction of FPCA is provided.
More attention is paid to MFPCA, its modifications and application to sleep data.

7.1 Functional principal components analysis

FPCA is the method developed for finding the strongest directions of variability included
in functional data and for the dimensionality reduction. Let consider a square–integrable
random function X defined on the time interval T = [0, 1] with mean µ : T → R and
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covariance function R : T × T → R. Using the Mercer’s theorem [Mercer, 1909] the
spectral decomposition of R follows the formula

R(s, t) =
∞∑
i=1

λiφi(t)φi(s),

where λ1, λ2, . . . are eigenvalues and φ1, φ2, . . . are eigenfunctions of R satisfying∫
T

R(s, t)φi(t)dt = λiφi(s), i = 1, 2, . . . ,

∫
T

φi(t)φj(t)dt =

0, i 6= j,

1, i = j.

While {φk}∞k=1 forms functional basis of the L2[0, 1] space, the Karhunen–Loewe ex-
pansion [Karhunen, 1947; Loeve, 1945] of a random function X is the following

X(t) = µ(t) +
∞∑
k=1

αkφk(t), t ∈ T. (7.1)

Then {φk}∞k=1 are functional principal components and the principal component scores
coefficients αk, k = 1, 2, . . . are considered as independent random variables with zero
mean and variance λk. It is easy to show that

αk =

∫
T

(X(t)− µ(t))φk(t)dt, k = 1, 2, . . . . (7.2)

In practice, the estimators for µ and R are usually found by the method of moments
applied to the data. Then the functional principal components are estimated as the
eigenfunctions of the covariance function estimator R̂. Finally, the principal component
scores are estimated by the formula (7.2) by replacing µ and φ1, φ2, . . . by their estimations.

In the Principal component analysis (PCA) the number of principal components is
equal or less than the dimension of the vector space we are working in. In the case of the
functional data we are in the space with possibly infinite dimension. On the other hand,
if our database included N independent curves, then at most N − 1 eigenfunctions of R
are nonzero [Ramsay and Silverman, 2005].

In fact, only the several functional principal components explain the majority of the
data variability. An optimal number P of the functional principal components can be
chosen similarly as in the case of PCA, for example such that the variance explained by
the first P functional principal components is above a given threshold κ∑P

i=1 λi∑N−1
j=1 λj

> κ.

86



In this work we set κ = 0.9. More approaches for the selection of P can be found in
[Ramsay and Silverman, 2005].

7.2 Multilevel functional principal component analysis

in details

Multilevel FPCA (MFPCA) [Di et al., 2009] is a version of FPCA developed for functional
data with repeated measurements. In other words, for each subject at least two obser-
vations are available. This method distinguishes two types of variability – the variability
between and within subjects. As an example we can mention the sleep probabilistic curves
of a given sleep microstate from the first and the second night.

Let consider I subjects with repeated observations defined on a closed time interval T .
As in the previous section, we assume for simplicity T = [0, 1]. To follow the ideas from
[Di et al., 2009] we will assume the balanced design – it means that for each subject the
same number of observations J > 1 is available and the observations within subjects have
a natural order; for example nights in our database of healthy sleepers.

Let us denote the jth observation of the ith subject in time t ∈ T by Xij(t). A two–way
functional ANOVA model with random effects is used to model the structure of the data

Xij(t) = µ(t) + ηj(t) + Zi(t) +Wij(t), i = 1, . . . , I, j = 1, . . . , J. (7.3)

Here, µ is the overall mean function and ηj, j = 1, . . . , J is the observation–specific de-

viation from the overall mean satisfying
J∑
j=1

ηj(t) = 0, ∀ t ∈ T for identifiability. These

functions are considered as fixed effects and their estimators

µ̂(t) =
1

IJ

I∑
i=1

J∑
j=1

Xij(t) = X ..(t),

η̂j(t) =
1

I

I∑
i=1

Xij(t)−X ..(t) = X .j(t)−X ..(t)

are similar to their versions from the standard ANOVA model.
Random effects Zi, i = 1, . . . I represent the subject–specific deviations from the observation–

specific mean and Wij is the residual deviation from the subject– and observation–specific
profile. Zi and Wij are considered to be zero–mean stochastic processes defined over a
common probability space (Ω,S,P) with adequately smooth covariance functions RZ :
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T × T → R and RW : T × T → R. Moreover, Zi and Wij are uncorrelated for each
i = 1, . . . , I and j = 1, . . . , J .

Using the Karhunen–Loewe expansion the random effects can be rewritten into the
form

Zi(t) =
∞∑
k=1

αikφ
(1)
k (t), i = 1, . . . , I, (7.4)

Wij(t) =
∞∑
k=1

βijkφ
(2)
k (t), i = 1, . . . , I; j = 1, . . . , J. (7.5)

Here, {φ(1)
k }∞k=1 and {φ(2)

k }∞k=1 are the eigenfunctions of RZ and RW respectively and they
are called the level 1 and level 2 eigenfunctions or functional principal components. Each
set of eigenfunctions forms an orthogonal basis of the L2 [0, 1] functional space, but the
two functional bases are not necessarily mutually orthogonal. Coefficients {αik}∞k=1 and
{βijk}∞k=1 are random variables with zero mean and

E(αikαil) =

0, if k 6= l,

λ
(1)
k , if k = l.

E(βijkβijl) =

0, if k 6= l,

λ
(2)
k , if k = l.

We call them the level 1 and level 2 principal component scores. Moreover, {αik, k =

1, 2, . . . } are assumed to be uncorrelated with {βijl, l = 1, 2, . . . } to mirror uncorrelation
between Zi and Wij.

In order to estimate eigenfunctions and principal component scores on both levels we
need to find an appropriate estimators for RZ and RW . Using the model (7.3) and the
formulas (7.4) and (7.5) it is not difficult to show that

cov (Xij(s), Xij(t)) = RZ(s, t) +RW (s, t),

cov (Xij(s), Xik(t)) = RZ(s, t), i = 1, . . . , I; j, k = 1, . . . , J ; j 6= k; s, t ∈ T.

Let RT = RZ + RW be the total covariance function. Di et al. [2009] estimated the
unknown covariance functions by the method of moments

R̂T (s, t) =
1

IJ

I∑
i=1

J∑
j=1

(Xij(s)− µ̂(s)− η̂j(s)) (Xij(t)− µ̂(t)− η̂j(t)) , (7.6)

R̂Z(s, t) =
1

IJ(J − 1)

I∑
i=1

J∑
j=1

J∑
l 6=j

(Xij(s)− µ̂(s)− η̂j(s)) (Xil(t)− µ̂(t)− η̂l(t)) , (7.7)

R̂W (s, t) = R̂T (s, t)− R̂Z(s, t). (7.8)

The proposed estimators are asymptotically unbiased estimators of the covariance func-
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tions RZ and RW for I →∞

E
(
R̂T (s, t)

)
=
I − 1

I
RT (s, t)

I →∞−−−−→ RT (s, t),

E
(
R̂Z(s, t)

)
=
I − 1

I
RZ(s, t)

I →∞−−−−→ RZ(s, t),

E
(
R̂W (s, t)

)
=
I − 1

I
RW (s, t)

I →∞−−−−→ RW (s, t).

If we want to be really strict, then it is possible to multiply each estimator by I
I−1 to obtain

unbiased estimators. However, this would cause no changes in the estimated level 1 or level
2 functional principal components and only estimated eigenvalues would be multiplied by
a constant.

Then the level 1 and the level 2 functional principal components are obtained as the
eigenfunctions of R̂Z and R̂W . Similarly to PCA or FPCA only finite number of the level
1 and the level 2 eigenvalues is nonzero. Di et al. [2009] chooses the optimal numbers
P1, P2 of the functional principal components on level 1 or 2 by the following criterion

Pi = min

{
k :

∑k
j=1 λ

(i)
j∑IJ−1

j=1 λ
(i)
j

≥ V1 ∧ λ
(i)
k < V2

}
, i = 1, 2,

where V1, V2 are the cumulative variance explained thresholds. Di et al. [2009] set V1 = 0.9

and V2 = 1
n
, where n is equal to the number of time points where the curves are observed.

In FPCA, the principal component scores can be derived directly from the formula
(7.2). However, this is not possible in MFPCA due to the fact that the level 1 and level
2 functional principal components are not necessarily mutually orthogonal∫

T

(Xij(t)− µ(t)− ηj(t))φ(1)
k (t)dt = αik +

∞∑
l=1

βijk

∫
T

φ
(1)
k (t)φ

(2)
l (t)dt,

∫
T

(Xij(t)− µ(t)− ηj(t))φ(2)
l (t)dt = βijl +

∞∑
k=1

αik

∫
T

φ
(1)
k (t)φ

(2)
l (t)dt.

Di et al. [2009] use a linear mixed effects model for estimation of the principal component
scores. The exact methodology is described in details in [Di et al., 2009] and therefore it
is omitted here.

7.2.1 Application to the sleep dataset

In this section the MFPCA algorithm is applied to the sleep data from the SIESTA
database (Section 1.2). In the SIESTA database for each subject information about the
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first and the second night spent in the sleep lab are available. Therefore the data are
appropriate for the analysis provided by the standard MFPCA method.

The MFPCA algorithm was applied to the sleep probabilistic curves of a given sleep
microstate or sleep stage mimicking the R&K stages. We considered either original sleep
probabilistic curves or the sleep probabilistic curves aligned within each subject separately.
Because of a small number of observations per subject and a high level of similarity between
the sleep probabilistic curves within a subject, the modified SMTW method worked well.

The MFPCA model has the form

Xij(t) = µ(t) + ηj(t) + Zi(t) +Wij(t), i = 1, . . . , 146, j = 1, . . . , 2.

First, we analysed the night effect of each sleep microstate or sleep stage separately. In
the second step we computed the coefficient of multiple correlation between the difference
in two nights of a subject and the corresponding difference in daily measures specified in
Table 1.1.

The effect of night

First, the night–specific profiles δj(t) = µ(t) + ηj(t), j = 1, 2 were estimated for each sleep
microstate or sleep stage separately. Because the results for in time aligned and misaligned
sleep probabilistic curves were approximately the same, we analysed only the first one.

The difference between the first and second night–specific profiles is negligible within
the majority of the sleep microstates (Figure 7.1). Considering Microstates 13 (45% Wake,
41% S1) and 19 (88% Wake), for the first night a slightly higher probability values are
typical. On the contrary, higher probability values of Microstate 14 (72% REM) are typical
for the second night.

More visible differences between the night–specific profiles were detected for the sleep
stages. When a subject sleeps for the first time in a new environment, his or her sleep
is lighter and problems with falling asleep occur. This phenomenon is called the “first–
night effect” [Roth et al., 2005; Tamaki et al., 2016] and it is visible in Figure 7.2. The
probability values for the Wake stage are higher for the first night in comparison to the
second night. On the contrary, for the second night the sleep probabilistic curves of stages
S2 and REM lie higher. The difference between the nights profiles in the SWS stage is
visible especially at the beginning of the night, for the second night the first two periods
of SWS reach higher local maxima values.
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Figure 7.1: Night profiles for 20 sleep microstates estimated by the MFPCA method.
Before applying the MFPCA method the curves were aligned with the modified Self–
modelling time warping method (SMTW) within each subject separately. The overall
mean function µ for each microstate is depicted in blue, red curve represents the first
night effect µ+ η1 and green curve represents the second night effect µ+ η2.
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Figure 7.2: Night profiles of sleep stages mimicking the standard R&K staging and es-
timated by the MFPCA method. Before applying the MFPCA method the curves were
aligned with the modified Self–modelling time warping method (SMTW) for each subject
separately. The notation is the same as in Figure 7.1.

Correlations between differences in the night profiles and daily measures

In the second step, we investigated whether a difference between nights of a subject is
mirrored also in a difference in a daily measure. For this purpose we used the coefficient
of multiple correlation.

Let d to be a zero–mean random variable representing the difference in a daily measure.
The random vector βdiff = (β11 − β21, . . . , β1P2 − β2P2)

T represents the difference in the
level 2 principal component scores and according to [Di et al., 2009]

E(βdiff ) = 0 ∈ RP2 and Cov(βdiff ) = 2Λ(2),

where Λ(2) is a diagonal matrix with the first P2 level 2 eigenvalues on its main diagonal.
Consequently the correlation matrix of βdiff is equal to the identity matrix IP2 . Finally,
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let γ to be a P2–dimensional vector of correlation coefficients between the variable d and
each component of the random vector βdiff , that is γi = ρ (d, βdiffi).

The coefficient of multiple correlation, which we denote ρm, measures how well a single
variable d can be predicted using a linear combination of a set of variables βdiff . In other
words

ρm (d, βdiff ) = max
a∈RP2

ρ
(
d, aTβdiff

)
,

which can be simplified into the formula

ρ2m (d, βdiff ) = γT (IP2)
−1 γ = γTγ =

P2∑
k=1

γ2k ∈ [0, 1]. (7.9)

Therefore ρ2m (d, βdiff ) is equal to the sum of squared correlations between d and each
component of the vector βdiff [Lamoš and Potocký, 1998, Chapter 7].

Let βidiff , i = 1, . . . , N = 146 denote the difference between the level 2 principal com-
ponent scores for 146 subjects and di are the corresponding differences in a daily measure.
Then

ρ̂m
2 (d, βdiff ) =

P2∑
k=1

ρ̂2 (d, βdiffk) , where

ρ̂ (d, βdiffk) =

N∑
i=1

(
di − d

) (
βidiffk − βdiffk

)
√√√√( N∑

i=1

(
di − d

))( N∑
i=1

(
βidiffk − βdiffk

))

βdiffk =
1

N

N∑
i=1

βidiffk

is the maximum likelihood estimator for ρ2m (d, βdiff ) [Lamoš and Potocký, 1998].

Let’s assume that the merged random vectors

(
βidiff

di

)
, i = 1, . . . , N represent a

zero–mean random sample from the (P2 + 1)–dimensional normal distribution with the

covariance matrix

(
2Λ(2) ζ

ζT σ2

)
, where ζ ∈ RP2 , ζk = cov(d, βdiffk), k = 1, . . . , P2 and

σ2 = cov(d). Then the test statistics FT =
N − (P2 + 1)

P2

ρ̂m
2 (d, βdiff )

1− ρ̂m2 (d, βdiff )
has the Fisher–

Snedecor distribution with P2 andN−(P2+1) degrees of freedom. We reject the hypothesis
that ρ2m (d, βdiff ) = 0 if FT exceeds the critical value F (α, P2, N − (P2 + 1)). In this case
we set the critical level α = 0.01.
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However, some elements of βdiff may be weakly correlated with the difference in a
daily measure and omitting them from (7.9) causes only minor changes in the coefficient
of multiple correlation. Let’s assume, that the first M level 2 functional principal compo-
nents explain more than 75% of the data variability. Then βdiff1 , . . . , βdiffM were always
considered. For each βdiffj , with j > M we computed the second power of its correlation
coefficient with d and sorted the obtained values in the descending order. Let’s denote
the new order by (1), (2), (3), . . . , (P2 −M). Then we selected the first 1 ≤ k ≤ P2 −M
of the ordered elements, such that the coefficient of multiple correlation between d and
β?diff =

(
βdiff1 , . . . , βdiffM , βdiff(1) , . . . , βdiff(k)

)T
expresses more than 95% of the second

power of the original coefficient of multiple correlation ρ2m (d, βdiff ). This procedure was
carried out for each combination of sleep microstate and a daily measure from Table 1.1.

sleep stage daily measure ρ2m (d, βdiff )

Wake SRQ_sq 0.23
VAS_drive 0.19

S1 VAS_aff 0.18
VAS_drows 0.18

S2 VAS_mood 0.21

SWS VAS_mood 0.22
VAS_drows 0.20
VAS_aff 0.19

Table 7.1: The second power of the coefficient of multiple correlation between the difference
in the level 2 principal component scores of a sleep stage and difference in a daily measure.
Only results where the coefficient was significant on level α = 0.01 are listed.

The second power of the significant estimated coefficients of multiple correlation are
listed in Tables 7.1 and 7.2. Changes in the profiles of the sleep probabilistic curves are
reflected especially in changes of subjectively scored sleep quality (SRQ_sq), level of mood
(VAS_mood), affectivity (VAS_aff), drive (VAS_drive) or drowsiness (VAS_drows). These
results follow our expectations. If a subject during the first night visits more frequently
sleep microstates representing light sleep or wakefulness (due to the “first–night effect”),
then it is natural to expect that his or her subjective feelings are different in contrast to
the night with deeper sleep.
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sleep daily ρ2m (d, βdiff )

microstate measure

1 (85% S2) SRQ_sq 0.16

4 (74% SWS) VAS_drows 0.19

6 (85% Wake) VAS_mood 0.14

SRQ_sq 0.12

7 (64% S2) FA2 0.26

SRQ_aq 0.22

pul_m 0.22

FA3 0.21

sys_e 0.20

dia_e 0.20

SRQ_scom 0.18

WB_e 0.18

FMAT_r 0.18

9 (75% S2) ACT_ts 0.23

VAS_aff 0.20

10 (88% S2) VAS_mood 0.21

VAS_aff 0.20

FA1 0.19

sleep daily ρ2m (d, βdiff )

microstate measure

12 (77% S2) ACT_ts 0.24

SRQ_scom 0.19

sys_m 0.18

VAS_drive 0.16

14 (72% REM) FA2 0.21

16 (96% SWS) WB_m 0.23

VAS_mood 0.22

VAS_aff 0.20

WB_e 0.19

17 (98% S2) WB_e 0.24

pul_e 0.22

VAS_aff 0.21

19 (88% Wake) FA2 0.21

SRQ_sq 0.21

SRQ_scom 0.19

VAS_drive 0.19

ACT_errp 0.19

VAS_drows 0.18

FA1 0.17

Table 7.2: The second power of the coefficient of multiple correlation between the difference
in the level 2 principal component scores of a sleep microstate and difference in a daily
measure. Only results where the coefficient was significant on level α = 0.01 are listed.

The coefficient of multiple correlation reflects how a single variable can be predicted
using a linear combination of other variables. However, despite the curves alignment,
the estimated correlations are at most 0.26 indicating only a moderate prediction power
of differences in daily measures by differences in sleep profiles of two consecutive nights.
This resembles our preliminary studies [Rošťáková et al., 2017; Rosipal et al., 2013], where
we also observed that the prediction of daily measure values with the one–dimensional
characteristics of the sleep structure is a difficult task.

First reason, why we are not able to successfully predict the results of a daily mea-
sure by the characteristics of the sleep structure, is the lack of a deeper information and
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monitoring of the other subject’s daily activities or feelings, which can affect the sleep
pattern, but have only a slight influence on the monitored outcomes of the questionnaires
or neuropsychological tests.

Second reason can be a high inter–subject variability or in the other words subject–
based differences in sleep structure, which is not adequately taken into account. For
example, existing sleep structure variation among two or more healthy sleepers may not
strongly influence some of the daily measure results. On contrary, it is a strong variation
of the subject’s sleep pattern from his typical sleep profile which can be manifested by a
strong change in his daily measure outcomes.

There are several studies showing the presence of the individual structure and patterns
in sleep [Finelli et al., 2001; De Gennaro et al., 2005, 2008]. Lewandowski et al. [2013]
detected a high degree of stability and individuality in the EEG spectra of two consecutive
night recordings of healthy subjects from the SIESTA database. Therefore we expect that
the individuality in the EEG recordings is inherited also in the sleep probabilistic curves
of the PSM. However, a longer, several nights sleep monitoring would be probably needed
to better capture this subject specific sleep pattern variability.

7.3 MFPCA for multilevel functional data with more

general structure

In the previous section we introduced the MFPCA method for functional data with the
same number of observations per subject and a strict order of observations within each
subject. The method was applied to the dataset of healthy sleepers with the aim to detect
whether changes in the sleep pattern between nights are mirrored in changes in daily
measures. However, the results we obtained were not reasonably strong.

Functional cluster analysis and the curves synchronisation performed in Section 6.1.1
brought new insights into the existing relationships between sleep microstates and daily
features in comparison to the raw data clustering. However, despite the benefit of the
2–step approach the results were not as clear as expected.

As mentioned above, the main reason for these problems is the strong individual pattern
of the subjects’ sleep structure. We hypothesise that an improvement in correlations
between sleep structure and daily measures can be obtained by modelling a subject’s
specific profile present in its sleep probabilistic curves.

The MFPCA method is a candidate for the subject specific profiles extraction. How-
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ever, for this purpose we need a database with a greater number of observations per
subject. Large datasets with multiple observations per subject would reflect a common
feature – a few observations for several subjects may be missing either due to the presence
of noise or simply due to the absence of a visit of the subject. We speak about datasets
where the number of observations varies between subjects (unbalanced design) or the order
of observations within subjects is exchangeable (unordered visits). Therefore, we need to
ask if it is possible to apply the same MFPCA algorithm also in these cases?

7.3.1 MFPCA for balanced data with unordered visits

In this section we focus on a balanced design with unordered visits. In such a case, Di
et al. [2009] recommend to set ηj = 0 and the model (7.3) becomes one–way functional
ANOVA

Xij(t) = µ(t) + Zi(t) +Wij(t), t ∈ T ; i = 1, . . . , I; j = 1, . . . , J.

Now the estimators (7.7), (7.6) and (7.8) change into

R̂T (s, t) =
1

IJ

I∑
i=1

J∑
j=1

(Xij(s)− µ̂(s)) (Xij(t)− µ̂(t)) ,

R̂B(s, t) =
1

IJ(J − 1)

I∑
i=1

J∑
j=1

J∑
l 6=j

(Xij(s)− µ̂(s)) (Xil(t)− µ̂(t)) ,

R̂W (s, t) = R̂T (s, t)− R̂B(s, t), s, t ∈ T.

By computing the expected values of the proposed estimators

E
(
R̂T (s, t)

)
=
I − 1

I
RZ(s, t) +

IJ − 1

IJ
RW (s, t)

I →∞−−−−→ RZ(s, t) +RW (s, t) = RT (s, t),

E
(
R̂Z(s, t)

)
=
I − 1

I
RZ(s, t)− 1

IJ
RW (s, t)

I →∞−−−−→ RZ(s, t),

E
(
R̂W (s, t)

)
= RW (s, t)

we see, that R̂W is unbiased estimator for RW , but R̂Z is only asymptotically unbiased
estimator for RZ . Therefore, when the number of subjects is small, the eigenfunctions
estimated directly from R̂Z are not good representatives of the level 1 functional principal
components.

In this case we recommend to interchange the order of estimators. Using the fact that

RW (s, t) =
1

2
cov (Xij(s)−Xik(s), Xij(t)−Xik(t)) , s, t ∈ T (7.10)
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the unbiased estimator for RW computed by the method of moments is

R̂W2(s, t) =
1

2

1

IJ(J − 1)

I∑
i=1

J∑
j=1

J∑
l 6=j

(Xij(s)−Xil(s)) (Xij(t)−Xil(t)) . (7.11)

Then it is not difficult to show that

R̂Z2(s, t) =
I

I − 1

(
R̂T (s, t)− IJ − 1

IJ
R̂W2(s, t)

)
,

is the unbiased estimators for RZ .

7.3.2 MFPCA for unbalanced design with unordered visits

In the previous section we described the problems of unbiasedness of the covariance func-
tion estimators proposed in [Di et al., 2009] when the order of visits within each subject is
exchangeable. When for each subject a different number of observations is at disposal and
their order is exchangeable we can foresee similar difficulties in these covariance function
estimators.

In this scenario of unbalanced data, the model (7.3) changes to

Xij(t) = µ(t) + Zi(t) +Wij(t), t ∈ T ; i = 1, . . . , I; j = 1, . . . , Ji > 1 (7.12)

and the covariance function estimators proposed in [Di et al., 2009] have to be modified
in the following way

R̂Torig(s, t) =
1∑I
i=1 Ji

I∑
i=1

Ji∑
j=1

(Xij(s)− µ̂(s)) (Xij(t)− µ̂(t)) ,

R̂Borig
(s, t) =

1∑I
i=1 Ji(Ji − 1)

I∑
i=1

Ji∑
j,l=1
l 6=j

(Xij(s)− µ̂(s)) (Xil(t)− µ̂(t)) , (7.13)

R̂Worig
(s, t) = R̂Torig(s, t)− R̂Borig

(s, t), (7.14)

where µ̂(t) = X ..(t) =
1∑I
i=1 Ji

I∑
i=1

Ji∑
j=1

Xij(t), t ∈ T. Then the expected values of the

covariance function estimators are

E
(
R̂Torig(s, t)

)
=

(
1− N2

N2
1

)
RZ(s, t) +

(
1− 1

N1

)
RW (s, t),

E
(
R̂Borig

(s, t)
)

=

(
1− 2

N1

N3 −N2

N2 −N1

+
N2

N2
1

)
RZ(s, t)− 1

N1

RW (s, t),

E
(
R̂Worig

(s, t)
)

=

(
2

N1

N3 −N2

N2 −N1

− 2N2

N2
1

)
RZ(s, t) +RW (s, t),
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where Nk =
I∑
i=1

Jki , k = 1, 2, 3. If the number of subjects increases to infinity and the

number of visits per subject is upper bounded, then these estimators are asymptotically
unbiased estimators for RT , RZ and RW , respectively. However, when the number of
subjects is small the eigenfunctions estimated from (7.13) and (7.14) may be too far from
the original level 1 and level 2 functional principal components.

Motivation example

Let’s consider two subjects with J1 = 2 and J2 = 10 observations defined by the formulas

X1j(t) = et + sin (2πt) +

(
1− j

2

)
t2, j = 1, 2,

X2k(t) = et + cos (2πt) + 0.15
k

2
, k = 1, . . . , 10; t ∈ [0, 1].

After applying the MFPCA algorithm with the covariance function estimators (7.13) and

(7.14) we estimated the subject–specific profiles Ẑi(t) = µ̂(t) +

P1∑
k=1

α̂ikφ̂
(1)
k (t). Due to the

fact, that the estimated principal component scores for the first level 1 principal compo-
nent for both subjects are close to zero and the remaining level 1 principal components
express noise only, the estimated subject–specific profiles are similar to the overall mean.
Consequently, they significantly differ from the original observations (Figure 7.3). This is
especially true for the first subject. Therefore it is necessary to adapt the estimators used
in MFPCA for unbalanced data.

Estimator for µ

Similarly to the standard ANOVA model for unbalanced design, two alternatives for the
estimator of the overall mean come into question – the weighted mean and the unweighted
mean.

The weighted mean

µ̂w(t) =
1∑I
i=1 Ji

I∑
i=1

Ji∑
j=1

Xij(t) =
1∑I
i=1 Ji

I∑
i=1

JiX i.(t)

is heavily influenced by the profile of the subjects with many observations. Therefore we
prefer to use the unweighted mean

µ̂uw(t) =
1

I

I∑
i=1

1

Ji

Ji∑
j=1

Xij(t) =
1

I

I∑
i=1

X i.(t) (7.15)

which puts equal weights to all subjects regardless of their sample sizes.
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Figure 7.3: Simulated data of two subjects with two and 10 observations respectively
(grey curves). The subject–specific profiles estimated by the MFPCA algorithm with the
covariance function estimators (7.13) and (7.14) are depicted in blue. The red curves
represent the subject–specific profiles estimated by the below suggested modifications of
the covariance function estimators.

Estimator for RW

Interchanging the order of the covariance function estimators as in the case of the balanced
design with unordered visits seems to be a good idea. The estimator of (7.10) in the case
of unbalanced design has the form

RWmm(s, t) =
1

2

1∑I
i=1 Ji(Ji − 1)

I∑
i=1

Ji∑
j,l=1
l 6=j

(Xij(s)−Xil(s)) (Xij(t)−Xil(t)) (7.16)

and it is the unbiased estimator for RW .
However, we were interested whether a better estimator may exist. Our goal was to

find an estimator R̂W which minimises

E
(
‖R̂W −RW‖2

)
= E

(∫
T

∫
T

(
R̂W (s, t)−RW (s, t)

)2
ds dt

)
(7.17)

and has the form

R̂W (s, t) =
1

2

I∑
i=1

Ji∑
j=1

Ji∑
l 6=j

wi (Xij(s)−Xil(s)) (Xij(t)−Xil(t)) , (7.18)
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where wi ≥ 0, i = 1, . . . , I satisfy
I∑
i=1

wiJi(Ji − 1) = 1 (7.19)

to guarantee unbiasedness of the estimator.
Using the Fubini’s theorem [Fubini, 1907] it is possible to rearrange the order of inte-

grals and (7.17) becomes

E
(
‖R̂W −RW‖2

)
=

∫
T

∫
T

E
(
R̂W (s, t)−RW (s, t)

)2
dt ds =

=
1

4

I∑
i,k=1

Ji∑
j,l=1
l 6=j

Jk∑
m,n=1
n6=m

wiwkE (Dijl(s)Dijl(t)Dkmn(s)Dkmn(t))−RW (s, t)2, (7.20)

where

Dijl(t) = Xij(t)−Xil(t) = Wij(t)−Wil(t), t ∈ T ; i = 1, . . . , I;

j, l = 1, . . . , Ji; j 6= l.

However, without additional information about Wij it is impossible to express (7.20) only
in terms of RW . Therefore, in the next we assume that Wij, i = 1, . . . , I; j = 1, . . . , Ji are
zero–mean gaussian processes with the covariance function RW . This implies that for each
finite set of time indices t1, . . . , tk ∈ T, k ∈ N , the random vector (Wij(t1), . . . ,Wij(tk))

T

follows the multivariate normal distribution. Consequently,

∀ s, t ∈ T :


Dijl(s)

Dijl(t)

Dkmn(s)

Dkmn(t)

 =


Wij(s)−Wil(s)

Wij(t)−Wil(t)

Wkm(s)−Wkn(s)

Wkm(t)−Wkn(t)

 ∼ N4 (0,Σ) ,

where the structure of Σ depends on the choice of the indices i, j, l, k,m, n. For example
if i = k, j = m, l = n

Σ = 2


RW (s, s) RW (s, t) RW (s, s) RW (s, t)

RW (t, s) RW (t, t) RW (t, s) RW (t, t)

RW (s, s) RW (s, t) RW (s, s) RW (s, t)

RW (t, s) RW (t, t) RW (t, s) RW (t, t)


or if i 6= k

Σ = 2


RW (s, s) RW (s, t) 0 0

RW (t, s) RW (t, t) 0 0

0 0 RW (s, s) RW (s, t)

0 0 RW (t, s) RW (t, t)

 .
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With the aim to express the higher order moments of the multivariate normal random
distribution, we apply the Isserlis’ theorem [Isserlis, 1918] to (7.20) and obtain

E
(
‖R̂W −RW‖2

)
= (A+B)

I∑
i=1

w2
i J

2
i (Ji − 1) +

(N2 −N1)(N2 −N1 − 2) + 1

4
A, (7.21)

A =

∫
T

∫
T

RW (s, t)2dtds,

B =

(∫
T

RW (s, s)ds

)2

.

Thanks to the assumption that RW : T × T → R is continuous and the time interval T is
closed, by using the extreme value theorem it can be shown that the integrals A and B
exist and are finite.

The optimal weights w1, . . . , wI which minimise (7.21) subject to (7.19) can be found
by the method of the Lagrange multipliers. Let us denote

F (w1, . . . , wI , λ) = (A+B)
I∑
i=1

w2
i J

2
i (Ji − 1) +

(N2 −N1)(N2 −N1 − 2) + 1

4
A−

− λ

(
I∑
i=1

wiJi(Ji − 1)− 1

)
,

where λ is a Lagrange multiplier. Setting the first derivatives of F according to w1, . . . , wI

and λ to zero we found that

wopti =
1

(N1 − I)Ji
, i = 1, . . . , I. (7.22)

It can be proved that the matrix of the second derivatives of F (wopt1 , . . . , woptI , 0) is positive
definite and therefore E

(
‖R̂W −RW‖2

)
with subject to (7.18) and (7.19) has its global

minimum in (7.22). The optimal unbiased estimator for RW has then the form

R̂Wopt(s, t) =
1

2

I∑
i=1

Ji∑
j=1

Ji∑
l 6=j

1

(N1 − I)Ji
(Xij(s)−Xil(s)) (Xij(t)−Xil(t)) (7.23)

which can be viewed as a weighted linear combination of covariance functions within each
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subject separately

R̂Wopt(s, t) =
1

N1 − I

I∑
i=1

Ji∑
j=1

(
Xij(s)−X i.(s)

) (
Xij(t)−X i.(t)

)
=

1

N1 − I

I∑
i=1

JiR
i(s, t),

X i.(t) =
1

Ji

Ji∑
j=1

Xij(t),

Ri(s, t) =
1

Ji

Ji∑
j=1

(
Xij(s)−X i.(s)

) (
Xij(t)−X i.(t)

)
, s, t ∈ T.

Estimators for RT and RB

The estimator R̂T for RT has the form

R̂T (s, t) =
1

N1

I∑
i=1

Ji∑
j=1

(Xij(s)− µ̂uw(s)) (Xij(t)− µ̂uw(t)) .

When for each subject at least two observations are available the expected value of R̂T is

E
(
R̂T (s, t)

)
=

(
1− 1

I

)
RB(s, t) +

(
1− 2

N1

+
1

I2

I∑
i=1

1

Ji

)
RW (s, t).

Using the knowledge, that R̂Wopt is the unbiased estimator for RW we can express the
unbiased estimator for RB as

R̂B(s, t) =
I

I − 1

(
R̂T (s, t)−

(
1− 2

N1

+
1

I2

I∑
i=1

1

Ji

)
R̂Wopt(s, t)

)
. (7.24)

7.3.3 MFPCA for unbalanced design with unordered visits: case

of a single observation for several subjects

Special case of the unbalanced design is when for some subjects only one observation is
available. Then the model (7.12) becomes

Xij(t) =

µ(t) + Zi(t) +Wij(t), if Ji > 1,

µ(t) + Zi(t), if Ji = 1.

The estimator R̂Wopt remains the same, because its computation takes into account only
subjects with more than two observations. However, small changes are needed for R̂B,
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because the expected value of R̂T changes in this scenario. Let L denotes the number of
subjects with only one observation. Then

E
(
R̂T (s, t)

)
= E

(
1

N1

I∑
i=1

Ji∑
j=1

(Xij(s)− µ̂uw(s)) (Xij(t)− µ̂uw(t))

)
=

=

(
1− 1

I

)
RB(s, t) +

(
1− 2

N1

+
1

I2

I∑
i=1

1

Ji
− L

N1

I − 2

I

)
RW (s, t).

The unbiased estimator for R̂B is then

R̂B(s, t) =
I

I − 1

(
R̂T (s, t)−

(
1− 2

N1

+
1

I2

I∑
i=1

1

Ji
− L

N1

I − 2

I

)
R̂Wopt(s, t)

)
. (7.25)

We would like to highlight, that if for each subject more than one observation is available
(L = 0), then (7.24) equals (7.25).

7.3.4 Application to the sleep dataset

At the beginning of this section we discussed the need for modifications in the MFPCA
algorithm when used to unbalanced data and with the aim to extract the subject specific–
profiles. However, the two sleep datasets introduced in Section 1.2 include only one (pa-
tients after ischemic stroke) or two observations for each subject (SIESTA database).
Therefore, we don’t posses an appropriate sleep database where the number of subjects’
visits would be greater than two.

However, in order to demonstrate the functionality of our modified MFPCA for un-
balanced data we considered the results of the cluster analysis produced by the 2–step
approach. Now, each cluster represents a “subject” and curves assigned into a cluster
represent repeated observation for the “subject”.

The sleep probabilistic curves for Microstates 16 and 8 clustered by the 2DTW–SMTW
approach and corresponding cluster–specific profiles estimated by the MFPCA method and
covariance function estimators proposed in Sections 7.3.2 and 7.3.3 are depicted in Figures
7.4 and 7.5. We would like to highlight, that the outlier profile of Microstate 16 (cluster
8 in Figure 7.4) was estimated by the MFPCA method only with a negligible error.

The cluster–specific profiles estimated by the modified MFPCA method provide an
alternative way for extracting cluster representatives. In comparison to the point–wise

mean estimates, they can by expressed in both, the functional Ẑi(t) = µ̂(t)+

P1∑
k=1

α̂ikφ̂
(1)
k (t)
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and vector α̂i = (α̂i1, . . . , α̂iP1)
T forms. However, the curves in a cluster are not represented

with a common one–dimensional characteristics, therefore in the light of the previously
used sleep to daily measures relationship investigation, we are not able to fully validate
the benefit of the cluster–specific profiles extracted by the MFPCA method in comparison
to the point–wise mean.

Figure 7.4: Microstate 16. Cluster analysis of 146 sleep probabilistic curves (grey) assigned
into 8 clusters by the 2–step approach with the modified SMTW algorithm in the regis-
tration step and k–medoids in the clustering step (2DTW–SMTW). The cluster–specific
profiles were estimated by the modified MFPCA algorithm (red curves).

105



Figure 7.5: Microstate 8. Cluster analysis of 146 sleep probabilistic curves (grey) assigned
into 9 clusters by the 2–step approach with the modified SMTW algorithm in the regis-
tration step and k–medoids in the clustering step (2DTW–SMTW). The cluster–specific
profiles were estimated by the modified MFPCA algorithm (red curves).
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Conclusion and main contributions of

the thesis

Sleep as a dynamical process enters a finite number of states during night. Understanding
its structure and impact on our daily life behaviour is important not only for medical
practice. In this thesis we offered an alternative view on sleep structure analysis by using
the methods of functional data analysis and Probabilistic sleep model [Lewandowski et al.,
2012]. We would like to highlight that the analysis of the sleep structure in the functional
data sense is a new approach in the area of sleep research and we are not aware of any
other scientific teams which would consider this approach.

One of the major objectives of the thesis was to identify specific sleep profiles (sleep
biomarkers) which significantly correlate with different physiological, demographic or daily
life measures. Our previous studies [Rosipal et al., 2013; Rošťáková, 2015] showed several
promising results. However, the first study did not take into account the whole dynamic of
the sleep process or in [Rošťáková, 2015] we did not consider the problem of misalignment
of the sleep probabilistic curves. Therefore we hypothesised, that important relationships
between the sleep structure and daily measures remained hidden.

In this thesis, for a given sleep microstate we focused on finding subgroups or clusters
of subjects with similar sleep probabilistic curve profiles and we tested whether there is a
significant difference between results of daily measures among formed clusters. In contrast
to [Rošťáková, 2015] we also analysed the impact of the curves misalignment problem on
results and we considered several method to solve it.

The second approach is based on the Multilevel functional principal component analysis
[Di et al., 2009] and relationship between changes in the sleep structure and changes in
daily measures between two nights of a subject.

The main results and contributions of the thesis are

• We proposed our own approach for iterative combination of the curves alignment
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and clustering which outperforms i) approaches where the curves alignment applied
to the whole dataset precede the clustering step, and ii) approaches for simultaneous
curves alignment and clustering. The benefit of our 2–step approach is also a higher
flexibility of algorithmic choices in the registration step.

• The algorithm of the Self–modelling time warping method [Gervini and Gasser,
2004] does not guarantee, that the estimated warping function is strictly increasing
which is in conflict with the basic assumption of the curves alignment. Therefore
we considered a penalty term in the method which avoids an estimate of a non–
decreasing warping function and also restricts the distance between real time and
warping function.

• We showed, that the curves alignment plays important role in the analysis of the
sleep structure. This is especially true for the S2, SWS, REM sleep stages and
related sleep microstates. On the other hand, in the case of the Wake stage and
related sleep microstates the exact occurrence of the periods of wakefulness during
the night is important when detecting relationships with daily measures.

• Using the 2–step approach we detected new relationships between sleep structure
and daily measures which were not observed in the case of in time misaligned sleep
probabilistic curves.

• The Multilevel functional principal component analysis (MFPCA) is a method a
priori developed for the detection of variability in functional data with repeated
measurements. After applying the MFPCAmethod to the dataset of healthy sleepers
we detected the “first–night sleep effect” considering several sleep microstates and
all sleep stages.

• Similarly as in [Edinger et al., 2008; Rošťáková et al., 2017; Rošťáková and Rosipal,
2018] we observed that the prediction of daily measures by using characteristics of
the sleep structure is a difficult task. We investigated a prediction power of the
linear regression model with independent variables being the differences in the level
2 principal component scores and dependent variables being the differences in a daily
measure. Then, the coefficient of multiple correlation validates the performance of
the model. However, the observed correlations were at most 0.26 indicating only a
moderate relationship between the changes in the sleep structure and changes in the
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values of a daily measure. We hypothesise that these weak correlations are mainly
influenced by the individuality in the subjects’ sleep profiles.

• We adapted the MFPCA algorithm for the case when the order of observations within
subjects is exchangeable or when the number of observations varies within subjects
(unbalanced design). We take into account also a special case of the unbalanced
design when for several subjects only one observation is available. We wrote a user–
friendly MATLAB [MATLAB, 2014] script for the implementation of the modified
MFPCA algorithm.

• We believe that both, the original or the modified version of the MFPCA algo-
rithm, can be used for the detection of subject–specific profiles in sleep dataset with
repeated measurements.

Finally we can conclude, that functional data analysis is a promising tool for sleep
structure analysis. One of its major benefits stands from the possibility to take into
the account the whole overnight sleep dynamics, which can be partially lost when con-
sidering one–dimensional sleep characteristics; being the common practice in the other
existing sleep studies. To overcome and solve the discussed important problem associated
with individuality of the sleep profiles, a larger database consisting of several nights sleep
recordings for each subject is needed.
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Resumé

Spánok je možné charakterizovať ako dynamický proces, ktorý zohráva dôležitú úlohu v
našich životoch. Jeho dĺžka, kvalita a štruktúra významne ovplyvňujú naše každodenné
fungovanie a v neposlednom rade aj zdravie.

Polysomnografia (PSG) je v súčasnosti najpoužívanejší diagnostický nástroj na moni-
torovanie a analýzu spánkového procesu. Zahŕňa súbor elektrických signálov hovoriacich o
biofyziologických zmenách, ku ktorým dochádza v ľudskom organizme počas spánku. Pre
potreby našej dizertačnej práce sú najdôležitejšie elektroencefalogram (EEG) – charakte-
rizujúci mozgovú aktivitu – a elektromyogram (EMG) – reprezentujúci aktivitu svalov.

V práci sme využívali dve spánkové databázy. Prvú množinu tvorilo 146 subjektov
bez výrazných spánkových porúch z databázy SIESTA [Klösch et al., 2001], ktorí strávili
dve po sebe nasledujúce noci v spánkovom laboratóriu. Druhá databáza pozostávala z
PSG meraní pacientov po cievnej mozgovej príhode (CMP) hospitalizovaných na I. Neu-
rologickej klinike Lekárskej fakulty Univerzity Komenského a Univerzitnej nemocnice v
Bratislave v rokoch 2013 – 2017.

V klinickej praxi sa na modelovanie spánku najčastejšie používa Rechtschaffen and
Kales spánkový model (R&K) [Rechtschaffen and Kales, 1968] alebo jeho novšia verzia
publikovaná Americkou asociáciou pre spánkovú medicínu (American Academy of Sleep
Medicine, AASM) [Iber et al., 2007]. Obidva modely predpokladajú, že spánkový proces sa
skladá z 5, resp. 6 spánkových stavov. Ide o stav bdelosti (Wake stage), ľahký spánok (S1,
resp. N1 v AASM), prechod k hlbokému spánku (S2, resp. N2), hlboký spánok (stavy S3,
S4; v AASM spojené do stavu N3) a REM stav (rapid eye movement). Neprekrývajúce sa
30–sekundové intervaly EEG signálu a ostatných PSG signálov sú potom podľa manuálu,
resp. pomocou automatického skórovacieho systému akým je napr. Somnolyzer 24x7

[Anderer et al., 2005], zaradené do jedného z uvažovaných spánkových stavov. Grafickým
výstupom R&K alebo AASM je takzvaný hypnogram.

Obidva spánkové modely sa však vyznačujú niekoľkými nevýhodami, akými sú príliš
malý počet uvažovaných spánkových stavov (5, resp. 6), diskrétna reprezentácia spánku
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a s tým súvisiace skokovité prechody medzi spánkovými stavmi, heterogenita stavu S2
a iné [Himanen and Hasan, 2000]. Z tohto dôvodu sme sa v našej práci zamerali na
alternatívny prístup k modelovaniu spánku – pravdepodobnostný spánkový model (PSM)
[Lewandowski et al., 2012].

Pravdepodobnostný spánkový model charakterizuje spánok pomocou pravdepodob-
ností väčšej množiny (v našom prípade 20) spánkových stavov nazývaných aj spánkové
mikrostavy. Podobne ako R&K alebo AASM, aj PSM je založený na analýze EEG, resp.
EMG signálu, ale na rozdiel od klasických spánkových modelov uvažuje len intervaly dĺžky
troch sekúnd. Každé z okien je následne reprezentované pomocou vektora pravdepodob-
ností π zaradenia daného intervalu do jednotlivých mikrostavov

π = (π1, π2, . . . , π20) , πi ∈ [0, 1] ,
20∑
i=1

πi = 1.

Okrem toho PSM umožňuje vypočítať analogické pravdepodobnosti aj pre štandardné
spánkové stavy Wake, S1, S2, SWS, REM. Viac detailov o trénovaní a aplikácii PSM je
možné nájsť v [Lewandowski et al., 2012; Rosipal et al., 2013].

Jedným z hlavných cieľov tejto práce je hľadanie špecifických spánkových profilov, tzv.
spánkových biomarkerov, ktoré významne korelujú s výsledkami denných mier reprezen-
tujúcich subjektívny, fyziologický a kognitívny stav jedinca. Pod dennými mierami rozu-
mieme napríklad dotazník ohľadom subjetívneho hodnotenia kvality spánku [Saletu et al.,
1987], nálady či nevyspatosti [Aitken, 1969], hodnoty krvného tlaku a pulzu večer pred
PSG meraním a ráno po prebudení či výsledky neurokognitívnych testov zameraných na
pracovnú pamäť, koncentráciu a jemnú motoriku [Grünberger, 1977; Kaufman and Licht-
enberger, 2005; Greene et al., 2008].

Práce zaoberajúce sa výskumom vzťahov medzi štruktúrou spánku a dennými mierami
sú zvyčajne založené na výpočte jednorozmerných spánkových charakteristík (celková doba
spánku, spánková latencia, spánková eficiencia a pod.) a ich korelácií s dennými mierami
[Rosipal et al., 2013; Lewandowski et al., 2012] či predikciou denných mier pomocou re-
gresného modelu [Edinger et al., 2008; Rošťáková et al., 2017]. Iný prístup je založený na
testovaní rozdielov v denných mierach medzi zhlukmi vytvorenými na základe spánkových
charakteristík [Buysse et al., 2008]. Nevýhodou jednorozmerných charakteristík spánku
však je, že neberú v úvahu celú časovú dynamiku spánku.

V tejto práci sme sa preto zamerali na analýzu spánku pomocou výstupov PSM.
Pravdepodobnosti výskytu zvoleného spánkového mikrostavu je možné chápať ako funkciu
času, pričom jej grafickú reprezentáciu nazývame pravdepodobnostná spánková krivka.
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Táto spojitá reprezentácia spánku umožňuje využitie pokročilejších techník matematickej
štatistiky, konkrétne funkcionálnej dátovej analýzy.

Naším cieľom bolo v rámci zvoleného spánkového mikrostavu nájsť podskupiny sub-
jektov s podobným profilom pravdepodobnostných kriviek. Hovoríme o zhlukovej analýze
kriviek. Pomocou Kruskal–Wallisovho testu sme následne testovali, či sa vytvorené zhluky
signifikantne líšia aj v hodnotách zvolených denných mier.

V predchádzajúcej práci [Rošťáková, 2015] zaoberajúcej sa obdobnou analýzou štruk-
túry spánku sme však narazili na problém. Zvolené metódy zhlukovania často nesprávne
zaradili krivky s podobným profilom do rôznych zhlukov, pretože ich dôležité charakteris-
tiky (lokálne extrémy) boli navzájom posunuté v čase. Hovoríme, že krivky neboli časovo
synchronizované.

Uvažujme dvojicu kriviek X, Y : T → R, bez ujmy na obecnosti nech T = [0, 1]. Pod
časovou synchronizáciou dvojice kriviek budeme rozumieť hľadanie rastúcej synchronizač-
nej funkcie h : T → T , ktorá minimalizuje zvolené kritérium vzdialenosti medzi krivkami,
napríklad

h ∈ argminh?

∫
T

(X(t)− (Y ◦ h?)(t))2 dt, h(0) = 0, h(1) = 1.

Iné príklady vzdialeností medzi krivkami je možné nájsť v [Montero and Vilar, 2014]. V
práci sme sa zamerali na tri metódy navrhnuté na riešenie problému synchronizácie kriviek
– Self–modelling time warping (SMTW) [Gervini and Gasser, 2004], metódu Pairwise curve
synchronisation (PCS) [Müller and Tang, 2008] a metódu Elastic time warping (ETW)
[Tucker et al., 2013].

V prípade prvej metódy sme navrhli modifikáciu algoritmu s cieľom dosiahnuť, aby
odhadnutá synchronizačná funkcia (warping function) bola striktne rastúca. Synchro-
nizačné funkcie odhadnuté pôvodným algoritmom SMTW boli v niektorých prípadoch
len neklesajúce, t.j. obsahovali konštantné segmenty a tým pádom viedli k “natiahnutiu”
určitých častí kriviek. Zároveň tým bol porušený základný predpoklad synchronizácie kri-
viek. Okrem toho sme uvažovali aj penalizáciu na vzdialenosť medzi reálnym časom a syn-
chronizačnou funkciou s cieľom zabrániť synchronizácií časovo príliš vzdialených úsekov.
Podobná penalizácia je zakomponovaná aj v metódach PCS [Müller and Tang, 2008] a
ETW [Tucker et al., 2013].

V prvom kroku sme aplikovali vybrané metódy časovej synchronizácie kriviek na celú
množinu spánkových pravdepodobnostných kriviek zvoleneného mikrostavu a následne
sme časovo zosúladené krivky zaradili do zhlukov pomocou metódy k–means [Lloyd, 1982]
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s verziou L2 normy pre krivky. Bohužiaľ, tento prístup sa neukázal ako príliš efektívny a
viedol k dvom extrémnym výsledkom

1. Krivky neboli dôkladne zosynchronizované a teda zhluková analýza viedla k rov-
nakým záverom ako v prípade bez časovej synchronizácie. Metóda SMTW je za-
ložená na synchronizácii všetkých kriviek na tzv. cieľovú krivku. V prípade veľkého
počtu rôznorodých spánkových profilov je však voľba cieľovej krivky náročná, pre-
tože cieľová krivka nemusí obsahovať charakteristiky typické pre niektoré krivky
a teda celková synchronizácia je nedostatočná. Metóda PCS synchronizuje každú
dvojicu kriviek osobitne. Avšak rôznorodosť spánkových profilov v našej databáze
spôsobila, že pri výpočte tzv. globálnej synchronizačnej funkcie pre každú krivku sa
efekty jednotlivých časových zosúladení anulovali.

2. Synchronizácia kriviek pomocou metódy ETW bez penalizácie na vzdialenosť medzi
reálnym časom a synchronizačnými funkciami zas mala za následok veľké zmeny v
profiloch kriviek a často viedla k “ideálnej” synchronizácií aj kriviek s rôznymi pro-
filmi. Uvažujúc penalizáciu na vzialenosť medzi reálnym časom a synchronizačnou
funkciou, zosúladenie kriviek nebolo postačujúce.

Celkovo môžeme skonštatovať, že prístup, pri ktorom časová synchronizácia kriviek pred-
chádza zhlukovej analýze, nie je vhodný pre spánkové pravdepodobnostné krivky.

Na základe týchto výsledkov sme sa zamerali na štúdium metód, ktoré priamo kom-
binujú synchronizáciu kriviek a zhlukovú analýzu. Hlavná myšlienka týchto metód je
synchronizácia kriviek len na zvolenú podmnožinu najpodobnejších kriviek, resp. zvo-
lených reprezentatívnych kriviek. Metódy k–mean alignment for curve clustering [Sangalli
et al., 2010] a Joint probabilistic curve clustering and alignment [Gaffney and Smyth, 2005]
pracujú iba s lineárnou transformáciou času pri synchronizácii kriviek

h(t) = at+ b, a > 0, b ∈ R

a teda nie sú aplikovateľné v prípade, ak sú krivky definované na rovnakom časovom
intervale a desynchronizácia je nelineárneho charakteru.

Jedna z verzií metódy PCS, konkrétne truncated Pairwise curve synchronisation (tPCS)
[Tang and Müller, 2009], je založená na synchronizácii zvolenej krivky len na podmnožinu
kriviek s podobným profilom 1. Následné zhlukovanie prebieha klasicky, napr. pomocou

1V prípade klasickej PCS dochádza k synchronizácií každej dvojice kriviek.
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metódy k–means. Napriek tomu, že táto metóda pracuje aj s nelineárnou transformá-
ciou času, dosiahnuté výsledky boli takmer identické so zhlukovaním nesynchronizovaných
kriviek.

Keďže žiadna z existujúcich metód kombinujúcich synchronizáciu kriviek a zhlukovú
analýzu sa neukázala ako vhodná pre naše spánkové dáta, rozhodli sme sa navrhnúť vlastný
prístup, ktorý sma nazvali 2–kroková iteračná metóda. Ako už napovedá jej názov, táto
metóda pozostáva z dvoch krokov

• zhlukovanie kriviek metódou k–medoids a matice vzdialeností skonštruovanej po-
mocou metódy Dynamic time warping [Wang and Gasser, 1997], ktorá využíva
vzájomnú synchronizáciu každej dvojice kriviek.

• synchronizácia kriviek v rámci každého zhluku osobitne, napr. pomocou SMTW
[Gervini and Gasser, 2004], resp. jej nami navrhovanej modifikovanej verzie, PCS
[Müller and Tang, 2008] alebo ETW [Tucker et al., 2013].

Tieto dva kroky sa opakujú dovtedy, kým sa neprekročí stanovený počet iterácií, zaradenie
do zhlukov ešte podlieha zmenám, resp. kým je priemerná vzdialenosť kriviek od centroidu
(priemernej krivky) ich zhluku väčšia ako zvolená konštanta.

Pri aplikácii 2–krokového iteračného prístupu na obidve spánkové databázy sme po-
zorovali zlepšenie synchronizácie kriviek v porovnaní s metódou tPCS. Oproti zhlukova-
niu časovo nesynchronizovaných kriviek náš prístup bol schopný vytvoriť homogénnejšie
a lepšie odseparované zhluky. Kvalita synchronizácie bolo meraná pomocou priemernej
vzdialenosti synchronizovaných kriviek od centroidu príslušného zhluku. Druhá miera,
priemerná silhouette [Rousseeuw, 1987], zas reprezentovala kompaktnosť a vzájomnú se-
paráciu zhlukov. Silhouette charakterizuje, či bola krivka zaradená do správneho zhluku
(hodnota ≈ 1), patrí do iného zhluku (hodnota ≈ −1), prípadne leží na hranici medzi
dvoma zhlukmi (hodnota ≈ 0) .

Zhluky vytvorené pomocou 2–krokového prístupu sa v rámci spánkových mikrostavov
blízkych stavom S2, SWS alebo REM signifikantne líšili v niekoľkých denných mierach,
pričom tieto rozdiely boli štatisticky nesignifikantné v prípade k–means zhlukovania nesyn-
chronizovaných kriviek alebo metódy tPCS.

Vzťah medzi vyššou pravdepodobnosťou pre mikrostavy blízke stavu REM a lepším
hodnotením kvality spánku bol viditeľný len v prípade použitia 2–krokového prístupu.
V našej predchádzajúcej práci [Rošťáková, 2015] bol viditeľný len vzťah medzi rastúcim
vekom a úbytkom hlbokého spánku, resp. s tým súvisiacim predĺžením času stráveného v
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ľahkom spánku a v stave bdelosti. Vďaka dvojkrokovému prístupu sme tiež pozorovali, že
starší ľudia majú nižší počet periód stavu REM.

Takisto sme pozorovali, že oneskorený výskyt prvej fázy hlbokého spánku vedie k
zvýšenej rannej ospalosti. Vplyv zvýšenej intenzity prebudení počas noci na zhoršenú
náladu alebo zvýšenú ospalovsť je všeobecne známy, avšak v niektorých mikrostavoch
podobných ľahkému spánku, resp. prebudeniu ho bolo možné pozorovať len vďaka 2–
krokovému prístupu.

Jedinou výnimkou bol mikrostav reprezentujúci stav plnej bdelosti počas a na konci
noci. V tomto prípade sa synchronizácia ukázala byť kontraproduktívna pri hľadaní vzťa-
hov s dennými mierami. Signifikantné rozdiely v subjektívnom hodnotení kvality spánku
medzi zhlukmi nesynchronizovaných kriviek zmizli po synchronizácii alebo synchronizá-
cia nepriniesla žiadne nové výsledky. Z tohto dôvodu usudzujeme, že presná poloha a
dĺžka periód bdelosti počas noci je dôležitá pri detekcii vzťahov medzi štruktúrou spánku
a dennými mierami. K podobnému záveru sme dospeli aj pri analýze štruktúry spánku
pacientov po cievnej mozgovej príhode (CMP).

V prípade pacientov po CMP neboli prínosy 2–krokového prístupu až také jednoznačné.
Predpokladáme, že to bolo spôsobené najmä nižším počtom zhlukov a celkovo nižším
počtom subjektov po CMP.

Vyššia pravdepodobnosť pre ľahký spánok a príbuzné mikrostavy viedla u pacientov
po CMP k lepšiemu skóre v teste motorickej aktivity. Opačný výsledok bol pozorovaný v
prípade mikrostavov na rozhraní stavov S1 a S2. Pacienti s vyššou pravdepodobnosťou pre
mikrostavy blízke hlbokému spánku reagovali pomalšie v teste reakčných časov, na druhej
strane ale dosiahli lepšie skóre v teste pracovnej pamäte [Kaufman and Lichtenberger,
2005] a cítili sa menej vyčerpaní po ukočení série neurokognitívnych testov.

Nakoniec sme ešte zistili, že pacienti po CMP so závažnejším stupňom poškodenia mali
hlbší spánok ako pacienti s miernym stupňom poškodenia.

V ďalšej časti dizertačnej práce sme sa zaoberala Viacstupňovou funkcionálnou verziou
metódy hlavných komponentov (Multilevel functional principal component analysis, MF-
PCA) [Di et al., 2009]. Funkcionálna verzia metódy hlavných komponentov (Functional
principal component analysis, FPCA) sa používa na redukciu dimenzie a odhalenie hlavných
smerov variability vo funkcionálnych dátach. Jej viacstupňová verzia sa používa v prípade
funkcionálnych dát s opakovanými pozorovaniami. MFPCA rozlišuje dva typy variability
v dátach – variabilita medzi subjektami (variabilita na 1. stupni) a variabilita v rámci
opakovaných pozorovaní subjektov (variabilita na 2. stupni). Podobne ako v FPCA, aj
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v MFPCA sú hlavné smery variability odhadnuté ako vlastné funkcie vhodne zvolenej
kovariančnej funkcie. Konkrétne ide o kovariančnú funkciu RB medzi dvoma pozorovania-
mi v rámci toho istého subjektu (1. stupeň) a kovariančnú funkciu RW rozdielu dvoch
pozorovaní v rámci toho istého subjektu (2. stupeň) [Di et al., 2009].

MFPCA metódu sme aplikovali na spánkové pravdepodobnostné krivky v jednotlivých
spánkových mikrostavoch zdravých subjektov. Pre každého subjekta sme mali k dispozícií
dve krivky (z prvej a druhej noci) reprezentujúce daný mikrostav. Vďaka MFPCA sme
v niektorých mikrostavoch a vo všetkých klasických spánkových stavoch našli tzv. “efekt
prvej noci” [Roth et al., 2005; Tamaki et al., 2016]. Keď subjekt po prvý raz spí v
neznámom prostredí, jeho spánok je ľahší, subjekt je náchylnejší na prebudenie sa alebo
má celkovo problém zaspať. Pravdepodobnosť výskytu ľahkého spánku (stav S1), stavu
bdelosti a príbuzných mikrostavov bola vyššia počas prvej noci. Pre druhú noc, keď už
subjekti boli viac zvyknutí na prostredie laboratória, zas dominovali stavy S2, SWS, REM
a im podobné spánkové mikrostavy.

Okrem toho sme vypočítali koeficient mnohonásobnej korelácie medzi rozdielom hodnôt
zvolenej dennej miery subjekta a prislúchajúcim rozdielom v spánkových pravdepodob-
nostných krivkách. Signifikantné korelácie boli pozorované medzi väčšinou spánkových
mikrostavov a subjektívnym hodnotením kvality spánku, nálady či nevyspatosti.

Na druhej strane ale musíme skonštatovať, že tieto korelácie boli pomerne nízke (pod
0.26). Koeficient mnohonásobnej korelácie charakterizuje, ako dobre je možné predikovať
hodnoty jednej premennej pomocou lineárnej kombinácie súboru premenných. Na základe
týchto výsledkov teda môžeme usudzovať, že predikčná schopnosť modelu, ktorý zahŕňa
charakteristiky reprezentujúce rozdiely v spánkovom profile subjekta medzi dvoma nocami
ako nezávislú premennú a príslušné rozdiely v dennej miere ako premennú závislú, nie je
veľmi vysoká.

Predikcia hodnôt denných mier pomocou charakteristík spánkového profilu subjekta
je pomerne obtiažna. Edinger et al. [2008] dosiahli najvyššiu koreláciu medzi lineárnou
kombináciou spánkových charakteristík (celkový čas spánku, spánková eficiencia a pod.)
a výsledkami testu reakčného času na úrovni 0.21. Rosipal et al. [2013] namiesto predik-
cie uvažovali len klasický koeficient korelácie medzi zvolenými dennými mierami a jed-
norozmernými spánkovými charakteristikami, ale aj tieto korelácie nepresahovali hodnotu
0.45. Podobne nízke korelácie medzi skutočnými a predikovanými hodnotami denných
mier pomocou štrukúry spánku sme pozorovali aj v [Rošťáková et al., 2017; Rošťáková
and Rosipal, 2018].
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Pravdepodobným dôvodom týchto nízkych korelácií je vysoká individualita spánkových
profilov subjektov. Touto problemtatikou sa zoaberali napríklad Finelli et al. [2001] a De
Gennaro et al. [2005, 2008]. Lewandowski et al. [2013] zas zistili pomerne vysokú podob-
nosť medzi spektrami EEG signálu medzi dvoma nocami subjektov z databázy SIESTA.
Je preto prirodzené očakávať, že táto podobnosť sa prejaví aj v spánkových pravdepodob-
nostných krivkách.

Jedným z možných riešení tohto problému je odhad typického spánkového profilu zvo-
leného mikrostavu pre jednotlivých subjektov a jeho následné odfiltrovanie zo spánkových
kriviek. Toto je však možné len za prepokladu opakovaných pozorovaní. Okrem po-
zložkového priemeru jednotlivých kriviek môžeme typický spánkový profil subjekta odhad-
núť aj pomocou metódy MFPCA.

Databázy s opakovanými meraniami v praxi často obsahujú chýbajúce pozorovania – či
už z dôvodu chybného merania alebo absencie subjekta na meraní. Teda počet pozorovaní
v rámci subjektov nie je konštantný (nevyvážený dizajn), resp. poradie pozorovaní nie je
striktne dané (prípad neusporiadaných pozorovaní). Tým ale dôjde k porušeniu predpok-
ladov metódy MFPCA.

V práci sme preto navrhli modifikácie metódy MFPCA pre prípad nevyváženého di-
zajnu, resp. neusporiadaných pozorovaní. Zmeny sa týkali najmä odhadov kovariančných
funkcií RB a RW . Odhad pre RW sme zvolili tak, aby minimalizoval strednú kvadratickú
odchýlku od skutočnej hodnoty kovariančnej funkcie a bol nevychýlený. V prípade RB

sme dosiahli len nevychýlenosť odhadu.
Validácia modifikovanej verzie metódy MFPCA na spánkových dátach s cieľom odhad-

núť typické spánkové profily subjektov však nebola možná. Väčšina dostupných spánkových
databáz obsahuje maximálne dve pozorovania pre jednotlivých subjektov a teda neu-
možňujú naplno využiť potenciál metódy MFPCA.

Modifikovanú MFPCA sme preto aplikovali na výsledky zhlukovej analýzy pravde-
podobnostných spánkových kriviek zvolených mikrostavov. Každý zhluk teraz predstavo-
val “subjekta” a krivky daného zhluku zas opakované pozorovania. Pomocou MFPCA sme
odhadli reprezentantov jednotlivých zhlukov. V prípade zhlukov s jedným pozorovaním
metóda MFPCA odhadla reprezentantov zhlukov so zanedbateľnou odchýlkou. Odhad-
nutí reprezentanti zhlukov s vyššou kardinalitou zas veľmi dobre charakterizovali typické
črty kriviek daného zhluku.

V závere by sme chceli skonštatovať, že analýza štruktúry spánku metódami funkcionál-
nej dátovej analýzy priniesla sľubné výsledky. Navrhnuté metódy a modifikácie existu-
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júcich algoritmov sa ukázali ako veľmi vhodné pri aplikácii na netriviálne spánkové dáta
a preto predpokladáme ich úspešnú aplikáciu aj na iné databázy nielen z oblasti analýzy
spánku.
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